Formula implementation using Action Rules in Control Solutions i.CanDoIt server:
The formula

$$
\mathrm{RT}=1.8^{*}(\mathrm{~T} 2-\mathrm{T} 1)^{*} \mathrm{~F} / 24
$$

may be calculated as follows:
First, we set up two registers to hold our constants as follows:

Thresholds		Trending	Cascade	Calculate	Consta		
This page defines constants that will be written to the assigned local registers one time at startup.							
		Showing 1 to 2 of 2			Update	< Prev	Next $>$
Rule $\#$	Value	Destination Register \#					
1	1.800000	1221					
2	24.000000	1223					
\# Rules Enabled: 2					Insert Delete		

Next we set up a sequence of calculate rules. These are executed in sequential order starting with the first rule, and repeating in round robin fashion.

In this example, local register \#1201 (R1201) contains T1, R1203 contains T2, and R1205 contains F. The result will be placed in R1213. If the values T1, T2, and F are being read by sensors, substitute the appropriate register numbers.

Rule \#1 calculates (T2-T1) and stores interim result in R1207. Rule \#2 calculates F/24 and stores interim result in R1209. Rule \#3 calculates (T2-T1)*F/24 and stores interim result in R1211. Rule \#4 calculates 1.8*(T2-T1)*F/24 and stores final result in R1213.

Be sure to use floating point registers for interim results. If the final result in R1213 needs to be further scaled to control an output, add rules as needed, or write the result to an analog output with its scale factors set appropriately as required by the application.

