
 BB4-8422 SNMP Agent

Page 1

BB4-8422 SNMP Agent

Overview

The local data objects within the IoTServer can be read and written as SNMP variables via the

SNMP Agent. The local objects cannot be accessed directly - they need to be mapped to one of

the branches of the IoTServer's MIB. The IoTServer supports four branches, each having a

specific data format for sharing of data. The most universally accepted data format in SNMP is

the simple integer. Regardless of the internal data format assigned to a local object, it will be

converted to the data type associated with the corresponding MIB branch when an SNMP Get

request is processed. Likewise when an SNMP Set is performed, the data will be automatically

converted to the native internal data type assigned to the local object.

The branches of the IoTServer MIB are as follows:

1.3.6.1.4.1.3815.1.5.1.1 Integer, signed, 32-bit representation of local objects

1.3.6.1.4.1.3815.1.5.1.2 Integer, unsigned, 64-bit representation of local objects

1.3.6.1.4.1.3815.1.5.1.3 Floating point representation of local objects

1.3.6.1.4.1.3815.1.5.1.4 Character string representation of local objects

1.3.6.1.4.1.3815.1.5.1.5 Trap send rule parameters included in trap messages

1.3.6.1.4.1.3815.1.5.1.6 Trap send data included in trap messages

1.3.6.1.4.1.3815.1.5.1.7 Trap OID identifying a trap message

Status

 BB4-8422 SNMP Agent

Page 2

SNMP Agent MIB-Int32 Data

This status page shows a list of local objects assigned or mapped to the indicated index positions

in this branch of this IoTServer's MIB. The present value of the local object is also displayed.

 BB4-8422 SNMP Agent

Page 3

SNMP Agent MIB-Uint64 Data

This status page shows a list of local objects assigned or mapped to the indicated index positions

in this branch of this IoTServer's MIB. The present value of the local object is also displayed.

SNMP Agent MIB-Real Data

 BB4-8422 SNMP Agent

Page 4

This status page shows a list of local objects assigned or mapped to the indicated index positions

in this branch of this IoTServer's MIB. The present value of the local object is also displayed.

SNMP Agent MIB-Char Data

This status page shows a list of local objects assigned or mapped to the indicated index positions

in this branch of this IoTServer's MIB. The present value of the local object is also displayed.

 BB4-8422 SNMP Agent

Page 5

SNMP Agent Trap Status

The SNMP Agent Trap Status page shows a list of all defined traps that could be sent along with

a tally of how many times sent and when last sent. If errors were encountered in attempting to

send a trap, the error indication is also displayed.

Counts may be cleared by clicking the Clear button. Clearing counts simply allows you to

monitor the occurrence of new trap messages.

 BB4-8422 SNMP Agent

Page 6

SNMP Agent Device Status

The Trap Status page provides diagnostic information on a rule by rule basis. This page shows

diagnostic information on a device by device basis.

Errors may be cleared by clicking the Clear button. Clearing errors simply clears present error

indications so you can check for the occurrence of new errors.

Configuration

NOTE: Any time the definition of the MIB is changed by adding or removing variables in the

MIB branches, it is necessary to restart SNMP to reload the new definition of the MIB. When the

MIB is changed as illustrated in any of the "Mapping" sections below, go to the SNMP Agent

Config File page and click the Restart SNMP button at the bottom of that page.

 BB4-8422 SNMP Agent

Page 7

SNMP Agent MIB-Int32 Mapping

Local objects are assigned to the Int32 MIB branch on this page. As the name implies, objects

mapped to this branch will be accessed by SNMP Get/Set as 32-bit signed integer values. If the

local object is not an integer, it will be converted to/from integer when the Get/Set is performed.

 Click on the index number or pencil icon to jump to the index edi�ng page for this index.

 Click on the trash can icon to delete this index.

To add or insert a new index, enter an index number and click Add/Edit.

 BB4-8422 SNMP Agent

Page 8

There are only two things to enter on the index edit page for integer: The object that should be

mapped to this MIB index, and a scale factor. The only universally recognized method of sharing

real data is scaled integer. Therefore, a scale factor is available for this purpose. If left set to zero,

it will be interpreted as "no scale" and be mathematically treated as 1.0.

SNMP Agent MIB-Uint64 Mapping

Local objects are assigned to the Uint64 MIB branch on this page. Objects mapped to this branch

will be accessed by SNMP Get/Set as 64-bit unsigned integer values (ASN Counter64). If the

local object is not an unsigned integer, it will be converted to/from unsigned integer when the

Get/Set is performed.

 Click on the index number or pencil icon to jump to the index edi�ng page for this index.

 BB4-8422 SNMP Agent

Page 9

 Click on the trash can icon to delete this index.

There are only two things to enter on the index edit page for unsigned integer: The object that

should be mapped to this MIB index, and a scale factor. Scale factor is optional. If left set to

zero, it will be interpreted as "no scale" and be mathematically treated as 1.0.

SNMP Agent MIB-Real Mapping

Local objects are assigned to the Real MIB branch on this page. Objects mapped to this branch

will be accessed by SNMP Get/Set as floating point values. If the local object is not a Real, it

will be converted to/from Real when the Get/Set is performed.

 BB4-8422 SNMP Agent

Page 10

 Click on the index number or pencil icon to jump to the index edi�ng page for this index.

 Click on the trash can icon to delete this index.

There is only one thing to enter on the index edit page for Real: The object that should be

mapped to this MIB index.

There is no one universally recognized format for sharing Real data via SNMP. The IoTServer

supports four options, and these are selected in configuration of the SNMP Agent task via the

Task Manager.

 BB4-8422 SNMP Agent

Page 11

SNMP Agent MIB-Char Mapping

Local objects are assigned to the Char MIB branch on this page. Objects mapped to this branch

will be accessed by SNMP Get/Set as Octet String (UTF-8) values. If the local object is not a

character string, it will be converted to/from a character string when the Get/Set is performed.

 Click on the index number or pencil icon to jump to the index edi�ng page for this index.

 Click on the trash can icon to delete this index.

There is only one thing to enter on the index edit page for Char: The object that should be

mapped to this MIB index.

 BB4-8422 SNMP Agent

Page 12

SNMP Agent Trap Send Rules

The SNMP Agent has the ability to automatically send SNMP Traps (or Informs) when certain

criteria is met regarding values found in local objects in the IoTServer. The list of SNMP Trap

Send Rules currently defined is found on this page.

NOTE: Trap rules do not directly reference local objects. The local object that is to be the subject

of a trap rule must first be assigned a spot in the MIB. The trap rule will then reference the

branch and index where that object is assigned. This is required because the trap message must

include an OID that identifies the data point, and this can only be done by assigning the object to

a place in the MIB so that it now has an OID.

 Click on the rule number or pencil icon to jump to the rule edi�ng page for this rule.

 Click on the trash can icon to delete this rule.

 BB4-8422 SNMP Agent

Page 13

To add or insert new rules, enter a number of rules to add, and select a starting point. Then click

the Insert button.

SNMP Agent Trap Send Rule Edit

SNMP Trap or Inform messages sent by this IoTServer are defined by rules outlined here. Traps

may be sent as v1, v2c, or v3, and this selection is made in the SNMP Trap Destination Device

configuration. The same trap may be sent to different devices as both v2c and v3 at the same

time using the same Trap Send Rule.

Rule Number – Used as a reference in the rule list for ordering the rules.

Branch – Specifies which branch in the MIB that this trap rule applies to, and primarily provides

the means to look up the local object number that should be evaluated.

Index – Specifies the index or row number in the given branch for looking up the local object

nubmer.

Test – Defines the test that should be performed to determine if the trap send rule state is true or

false. Trap state is considered “true” when this condition is met

Test label Test performed on object versus threshold

GT Object greater than threshold

 BB4-8422 SNMP Agent

Page 14

GE Object greater than or equal threshold

LT Object less than threshold

LE Object is less than or equal threshold

EQ Object is equal threshold

NE Object is not equal threshold

DEV Object deviates from threshold by hysteresis amount

DELTA Object has changed by threshold amount

For most tests, the object is simply compared to the threshold value. The delta test is a special

case. The threshold specifies an amount by which the local object needs to change before the rule

test will be flagged as true. However, this “true” state is only temporary. Once the trap is sent,

the new object value is now saved for subsequent tests of “changed by”. Every time the local

object changes by the threshold amount, a new trap will be sent.

Test type delta with threshold of zero is a special case within the special case. If the test type is

delta and the threshold value is zero, then the trap will be sent any time the local object (found by

looking it up in the MIB) has been updated or changed by some other action in the system,

without any regard for what the actual value of the object is.

Threshold Value (CSV "CondVal") – Provided no threshold object number is given, this

becomes the threshold value for test purposes.

Threshold Object (CSV "CondObj")– Overrides the threshold value when given (non-zero), and

provides the local object from which a test threshold should be retrieved.

Hysteresis (CSV "Hyst") – Specifies the hysteresis value to be applied in the test process.

Hysteresis is used to prevent a flood of trap messages when the object is hovering near the

threshold but fluctuating frequently. For ‘greater than’ type tests, once the rule state becomes

true, the object value must fall below the threshold by the hysteresis amount before the rule state

will return to false. For ‘less than’ type tests, once the rule state becomes true, the object value

must rise above the threshold by the hysteresis amount before the rule state will return to false.

For example, if the rule threshold is 10, and the test is ‘greater than’, then the rule state will

 BB4-8422 SNMP Agent

Page 15

become true when the object value exceeds 10. If the hysteresis value is 2, then the object value

must now fall below 8 before the rule state will return to false.

The hysteresis value takes on a special role when the test type is “deviates by”. The rule state

will be true when the difference between object value and threshold exceeds the hysteresis

amount in either direction, high or low.

SendOnTrue – Select (use Y/N in CSV) to enable the sending of a trap when the condition

specified by this rule tests “true”.

SendOnFalse – Select (use Y/N in CSV) to enable the sending of a trap when the condition

specified by this rule tests “false”.

Device Group – The device group allows selectively sending the same trap to multiple devices.

Both the trap send rules and the trap devices have a group association. When the group

association of a trap rule matches the groups that the device is a member of, the trap will be sent

to that device, and all devices included in the group.

The group selection is made as a bit mask labeled "DevMask" in CSV and XML files. Group

"A" is bit 0 or value of 1. Group "B" is bit 1 or value of 2. Group "C" is bit 2 or value of 4, and

so on. The mask is the summation of the groups. Only the first 8 bits are used in the web UI for

ease of use. Internally, the test for group membership is a simple logical AND of the mask values

found in the trap rule and the device configuration.

SendInform – Uncheck box (default) to send the message as an SNMP Trap. Check box to send

the message as an SNMP Inform. In the CSV or XML file, use "Y" to send as Inform, "N" to

send as trap. If omitted, the default is to send an SNMP Trap.

 BB4-8422 SNMP Agent

Page 16

OnTime – Specifies a minimum amount of time in seconds that the “true” state must exist before

the trap state will be fully regarded as true and “true” trap sent. If the condition tests true, and

within this time period returns to false, no “true” trap will be sent.

OffTime – Specifies the minimum amount of time in seconds that the “false” state must exist

before the trap state will be fully regarded as false and the “false” trap sent. If the condition tests

false, and within this time period returns to true, no “false” trap will be sent.

TrueMsg – Provides a user defined message that will be delivered as one of the varbinds in any

“true” Trap or Inform message sent.

FalseMsg – Provides a user defined message that will be delivered as one of the varbinds in any

“false” Trap or Inform message sent.

RepTrue – Used to repeat the trap this number of times when true. Traps are not acknowledged,

so this provides a means of repeating the same Trap message to better ensure delivery. Set to -1

to repeat indefinitely while condition tests true.

RepFalse – Used to repeat the trap this number of times when false. Traps are not

acknowledged, so this provides a means of repeating the same Trap message to better ensure

delivery. Set to -1 to repeat indefinitely while condition tests false.

RepTime – Specifies the amount of time in seconds to wait in between repeated sending of the

same Trap message as indicated by the repeat count attributes above.

 BB4-8422 SNMP Agent

Page 17

SNMP Agent Trap Destination Devices

The SNMP Trap Destination Devices page is where you set up the list of SNMP managers that

this IoTServer will send SNMP Traps or Informs to.

 Click on the device number or pencil icon to jump to the device edi�ng page for this device.

 Click on the trash can icon to delete this device.

To add additional devices to the list, enter a device number to be added, and click Select Device.

If the device number already exists, you will simply be editing that device. If the device number

did not exist, you will create that device by editing it.

 BB4-8422 SNMP Agent

Page 18

SNMP Agent Device Edit

The DEVICES section in the SNMP server (agent) specify which remote SNMP devices traps or

informs should be sent to as a result of the trap send rules.

Number – A number ranging from 1 to device table size, and was historically referenced in read

and write maps as the device to which the map applied. However, with the implementation of

device mask in the SNMP agent, the mask is what actually determines which device(s) the trap is

sent to, and the same trap may be sent to multiple devices with only one trap rule as a result of

the mask implementation. This number is therefore simply a row number on the list for database

reference.

Name – Simply a reference in the web UI for the user to identify this device.

PeerName – Provides a definition of where on the network to find the device. The peername in

simplest form will be an IP address as illustrated in the XML file example above. However, if

the network has access to a DNS server and that server is configured in the network settings of

the local device, then peername may be any name that can be found via DNS lookup.

Device Group – Select which groups this device is a member of. The device group allows

selectively sending the same trap to multiple devices. Both the trap send rules and the trap

devices have a group association. When the group association of a trap rule matches the groups

that the device is a member of, the trap will be sent to that device, and all devices included in the

group.

The group selection is made as a bit mask labeled "DevMask" in CSV and XML files. Group

"A" is bit 0 or value of 1. Group "B" is bit 1 or value of 2. Group "C" is bit 2 or value of 4, and

 BB4-8422 SNMP Agent

Page 19

so on. The mask is the summation of the groups. Only the first 8 bits are used in the web UI for

ease of use. Internally, the test for group membership is a simple logical AND of the mask values

found in the trap rule and the device configuration.

Version – Specifies what SNMP version should be used to send the trap, which in turn

determines certain aspects of how the trap message is formatted. Version may be 1, 2, or 3 where

2 really means v2c.

Community – Is the community string as defined for SNMP v1 and v2c.

SNMPv3 Configuration - The following parameters are used

only for v3

Security Level - Sets security level, 1=noAuthNoPriv, 2=authNoPriv, 3=authPriv. Those are the

SNMP acronyms meaning (1) no authentication or privacy, (2) authentication required but

privacy is not, (3) both authentication and privacy are required. The term “privacy” means

encryption.

User Name - Sets the SNMP security name, analogous to username in SNMP terms.

Authentication Type - Sets the authentication type, may be “NOAUTH”, “MD5”, or “SHA”. It

determines how the username (security name) is hashed when transmitted.

Authentication Phrase - Sets the authentication phrase, analogous to an SNMP password.

IMPORTANT: This string must be a minimum of 8 characters long. If less than 8 characters,

authentication is guaranteed to fail.

 BB4-8422 SNMP Agent

Page 20

Privacy Type - Sets the privacy type, may be “NOPRIV”, “DES”, or “AES”. This determines

which encryption algorithm will be used.

Privacy Phrase - Sets the privacy phrase which is used as the encryption key. IMPORTANT:

This string must be a minimum of 8 characters long. If less than 8 characters, decryption is

guaranteed to fail.

EngineId - Sets the engine ID that will be sent with the trap message if SNMPv3. (Used only for

SNMPv3.)

NOTE: The engine ID will be taken as a literal ASCII string (and probably not work) if it does

not begin with “0x”. The recipient of an SNMPv3 trap will generally discard the message if the

engine ID does not match its own engine ID. It is necessary to know quite a bit about where you

are sending traps with v3.

SNMP Agent Config File

All of your configuration information is stored in an internal database each time you click the

Save button on any page where configuration entries may be made. To make configuration

portable from one device to another, and for purposes of retaining a backup copy, the

configuration information may be exported and imported as XML or CSV files. This page is

where your configuration file management takes place.

It is important to note that the XML file saved within any one client/server function will contain

the configuration information for only that function. Depending on overall system configuration,

a complete backup may involve more than one XML or CSV file.

 BB4-8422 SNMP Agent

Page 21

XML Files: When an XML file has been selected, click the Load button to clear the

configuration database and reload configuration from the given XML file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in XML format.

You may type in a new name in the file name window for purposes of saving a new file. If you

click the Refresh button, the file name will be restored to the name currently loaded into the

client. The name could have been changed by selecting a file from the list below, or by typing in

a new name. If the displayed name has not yet been used, then Refresh will restore the file name

to what was most recently loaded.

CSV Files: If a CSV file is selected, the Load and Save buttons will change into load/save CSV

buttons. When a CSV file has been selected, click the Load button to clear the configuration

database and reload configuration from the given CSV file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in CSV format.

Snmpd.conf Files: Any time the snmpd.conf file is regenerated on the Snmpd.conf page, you

will need to come here to transfer that generated file into the SNMP engine. Select the generated

.conf file from the drop-down list below, and then click the Load button. You can also retrieve a

copy of the snmpd.conf file actually in use by clicking the Save button. The content of the

currently in-use snmpd.conf file will be transferred to the file name you have entered.

 BB4-8422 SNMP Agent

Page 22

NOTE: Any time you reload the snmpd.conf file here, you also need to click the Restart SNMP

button at the bottom of this page.

The drop-down list will show a list of all configuration files currently found in the device's

configuration folder. When you select an XML or CSV file from this list, the name will be

copied to the Load/Save section of this page for pending load or save.

You may view the selected file by simply clicking View. You can delete the file by clicking

Delete.

You may upload files to the IoTServer from your PC. Start by clicking Browse, and then use the

browser's file dialog to locate the file on your PC. Once a file is selected on your PC, click the

"Start upload" button to initiate the transfer.

You may also download files from the IoTServer to your PC. Click the Download button to

transfer the selected file to your PC.

Any time an XML or CSV file is loaded, an error log file is generated. The error log file will be

given the same name as the loaded file, but with ".err" as the suffix instead of ".xml" or ".csv".

You may view the error log by selecting it from the list and clicking View.

Status is normally displayed in a message box at the top of the screen when the load or save

operation is complete. But if you want to double check the status of the previous file operation,

click Check Status.

 BB4-8422 SNMP Agent

Page 23

Select Yes to enable logging, or No to disable. When selecting Yes, provide a log name in the

/home/customer/logs/ directory. All accesses to the MIB by external managers are logged here. It

is recommended that you enable logging only temporarily for diagnostic purposes to avoid

eventually running out of file space.

The log files can be viewed on the System -> Logs page.

The SNMP Agent task needs to be suspended while a file load operation is in progress to prevent

acting on any partial configurations. This suspend/resume operation will normally happen

automatically as part of the sequence invoked by the Load button when loading an XML file.

The task must be explicitly suspended here for importing a CSV file. The Suspend button will

become a Resume button when the task is suspended. Click Resume to continue operation. The

current status is always displayed here.

The SNMP Agent task suspended via the Suspend button is the API task that provides the

interface between the web UI and the internal task management. The SNMP Engine itself is

another process. Any time the MIB configuration is altered, it is necessary to restart SNMP

(snmpd service). Click Restart SNMP to reload SNMP with the new definition of the MIB.

SNMP Agent Snmpd.conf File

The SNMP engine that responds to external SNMP manager's Get and Set requests requires a

configuration file named snmpd.conf to direct its functionality, primarily in terms of

authorization. This page allows automated generation of that file, but with the option to manually

edit it.

The SNMP engine in this IoTServer is the widely used open source Net-SNMP package. If you

are concerned about manually editing the snmpd.conf file, simple search the Internet for Net-

SNMP documentation - there is much to be found.

 BB4-8422 SNMP Agent

Page 24

The port on which SNMP listens for Get/Set requests defaults to the standard port 161. You may

change it here if you wish.

All SNMP devices have a set of system parameters that are universally available, and these

describe the system. Enter your personalized system information here.

Authorization for access in SNMPv1 and SNMPv2 is very simply. You only need to match the

community names which are treated sort of like a password. If using SNMP v1 or v2 (v2c), enter

your community strings here.

 BB4-8422 SNMP Agent

Page 25

Click the Generate Config button to auto-generate an snmpd.conf file. Parameters included in the

file will be taken from two places: (1) The entries showing above on this page. (2) User settings

from the System -> Users page (if SNMPv3).

SNMPv3 enforces access only by known users. These users may be a person or may be anther

machine, but must be defined as a "user" either way. To permit SNMPv3 access, go to the

System -> Users page and create a "user" for each person or machine that will access the MIB in

this IoTServer. Once the users are created, and they have been selected for SNMPv3 access, they

will be automatically included in the snmpd.conf file generated here.

Once the interim snmpd.conf file is generated, it may be viewed and optionally edited here. The

file content displayed here is not actually saved to a file until you click the Save button at the

bottom. When Save is clicked, the file name given will be created or overwritten with the content

currently displayed.

There are two more steps required to complete the reconfiguration of SNMP. Go to the SNMP

Agent Config File page, select the newly created interim snmpd.conf file, and click the Load

button (as discussed under “SNMP Agent Config File”). Finally, after loading the new

snmpd.conf file, click Restart SNMP at the bottom of the Config File page.

 BB4-8422 SNMP Agent

Page 26

When the snmpd.conf file content is saved to an actual file as a result of clicking the Save button,

you should see the confirmation illustrated here.

SNMP Agent XML Files

Example XML File

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- IoT Server SNMP Agent configuration file -->

<configuration>

<mib_vars_int32>

<var index="1" object="1"/>

<var index="2" object="2"/>

<var index="3" object="3"/>

<var index="4" object="4" scale="10"/>

<var index="5" object="5" scale="100"/>

</mib_vars_int32>

<mib_vars_uint64>

<var index="1" object="3"/>

</mib_vars_uint64>

<mib_vars_double>

<var index="1" object="4"/>

<var index="2" object="5"/>

</mib_vars_double>

<mib_vars_charstr>

<var index="1" object="6"/>

<var index="2" object="7"/>

</mib_vars_charstr>

<trap_devices>

<dev id="1" version="3" secLevel="3" peername="192.168.1.109:162" name="Dell"

devMask="1" username="jim" authType="MD5" authPhrase="jimsAuthPhrase"

privType="DES" privPhrase="jimsPrivPhrase" engineId="0x80000ee7031803731a2386"/>

</trap_devices>

 BB4-8422 SNMP Agent

Page 27

<trap_rules>

<rule branch="1" index="1" test="gt" condval="10" sendOnTrue="1" sendOnFalse="1"

devMask="1" truemsg="Value is up" falsemsg="value is down"/>

</trap_rules>

</configuration>

<mib_vars_xxx> section

There will be up to four <mib_vars_xxx> sections in the XML file referring to the branches of

the MIB. The Json setMibVars API call specifies the branch by number in the call. The contents

of each MIB var entry are as listed below - a simple mapping of object to MIB index.

index=”n” – Refers to the row number in the MIB table, ranging from 1 to maximum table size

as set in the agent task configuration at startup.

object=”n” – Refers to the local object number mapped at this location (branch and index) in the

MIB.

scale=”n.nn” – Applies to integer branches only (disregarded otherwise), and provides the scale

factor by which the local object value is multiplied when responding to an SNMP Get, or by

which the incoming value from an SNMP Set is divided before placing it into the local object.

<trap_devices> section

id=”n” – A number ranging from 1 to device table size, and was historically referenced in read

and write maps as the device to which the map applied. However, with the implementation of

device mask in the SNMP agent, the mask is what actually determines which device(s) the trap is

sent to, and the same trap may be sent to multiple devices with only one trap rule as a result of

the mask implementation.

peername=”xxxx” – Provides a definition of where on the network to find the device. The

peername in simplest form will be an IP address as illustrated in the XML file example above.

However, if the network has access to a DNS server and that server is configured in the network

settings of the local device, then peername may be any name that can be found via DNS lookup.

version=”n” – Specifies what SNMP version should be used to send the trap, which in turn

determines certain aspects of how the trap message is formatted. Version may be 1, 2, or 3 where

2 really means v2c.

devMask=”x” – A 32-bit bit mask that allows sending the same trap to multiple devices. Both

the trap send rules and the trap devices have a “device mask” (devMask). This effectively creates

device groups in a very simple manner. The bit mask found in the trap send rule is logically

ANDed with the bit mask in the device table entry. If the result is non-zero, then the trap is sent

to this device.

 BB4-8422 SNMP Agent

Page 28

community=”xxxx” – Is the community string as defined for SNMP v1 and v2c.

name=”xxxx” – Simply a reference in the web UI for the user to identify this device.

secLevel=”n” - Sets security level, 1=noAuthNoPriv, 2=authNoPriv, 3=authPriv. Those are the

SNMP acronyms meaning (1) no authentication or privacy, (2) authentication required but

privacy is not, (3) both authentication and privacy are required. The term “privacy” means

encryption. (Used only for SNMPv3.)

username=”xxxx” - Sets the SNMP security name, analogous to username in SNMP terms.

(Used only for SNMPv3.)

authType=”xxx” - Sets the authentication type, may be “NOAUTH”, “MD5”, or “SHA”. It

determines how the username (security name) is hashed when transmitted. (Used only for

SNMPv3.)

authPhrase=”xxx” - Sets the authentication phrase, analogous to an SNMP password. (Used

only for SNMPv3.)

privType=”xxx” - Sets the privacy type, may be “NOPRIV”, “DES”, or “AES”. This

determines which encryption algorithm will be used. (Used only for SNMPv3.)

privPhrase=”xxx” - Sets the privacy phrase which is used as the encryption key. (Used only for

SNMPv3.)

engineId=”xxx” - Sets the engine ID that will be sent with the trap message if SNMPv3. (Used

only for SNMPv3.)

Note: The engine ID will be taken as a literal ASCII string (and probably not work) if it does not

begin with “0x”. The recipient of an SNMPv3 trap will generally discard it if the engine ID does

not match its own engine ID. It is necessary to know quite a bit about where you are sending

traps with v3.

<trap_rules> section

branch=”n” – Specifies which branch in the MIB that this trap rule applies to, and primarily

provides the means to look up the local object number that should be evaluated.

index=”n” – Specifies the index or row number in the given branch for looking up the local

object nubmer.

condval=”n.nn” – Provided no conditional object number is given, this becomes the threshold

value for test purposes.

condobj=”n” – Overrides the conditional value when given (non-zero), and provides the local

object from which a test threshold should be retrieved.

 BB4-8422 SNMP Agent

Page 29

test=”xxx” – Defines the test that should be performed to determine if the trap send rule state is

true or false.

Trap state is considered “true” when this condition is met

XML Label Test Code Rest performed on object versus threshold

“none” 0 No trap sent

“gt” 1 Object greater than threshold

“ge” 2 Object greater than or equal to threshold

“lt” 3 Object less than threshold

“le” 4 Object is less than or equal to threshold

“eq” 5 Object is equal to threshold

“ne” 6 Object is not equal to threshold

“dev” 7 Object deviates from threshold by hysteresis amount

“delta” 8 Object has changed by threshold amount

Threshold is either the fixed value given by “condval”, or the value found in the object given as

“condobj”.

For most tests, the object is simply compared to the threshold value. The delta test is a special

case. The threshold specifies an amount by which the local object needs to change before the rule

test will be flagged as true. However, this “true” state is only temporary. Once the trap is sent,

the new object value is now saved for subsequent tests of “changed by”. Every time the local

object changes by the threshold amount, a new trap will be sent.

Test type delta with threshold of zero is a special case within the special case. If the test type is

delta and the threshold value is zero, then the trap will be sent any time the local object (found by

looking it up in the MIB) has been updated or changed by some other action in the system,

without any regard for what the actual value of the object is.

hyst=”n.nn” – Specifies the hysteresis value to be applied in the test process. Hysteresis is used

to prevent a flood of trap messages when the object is hovering near the threshold but fluctuating

frequently. For ‘greater than’ type tests, once the rule state becomes true, the object value must

fall below the threshold by the hysteresis amount before the rule state will return to false. For

‘less than’ type tests, once the rule state becomes true, the object value must rise above the

threshold by the hysteresis amount before the rule state will return to false. For example, if the

rule threshold is 10, and the test is ‘greater than’, then the rule state will become true when the

object value exceeds 10. If the hysteresis value is 2, then the object value must now fall below 8

before the rule state will return to false.

The hysteresis value takes on a special role when the test type is “deviates by”. The rule state

will be true when the difference between object value and threshold exceeds the hysteresis

amount in either direction, high or low.

 BB4-8422 SNMP Agent

Page 30

ontime=”n.nn” – Specifies a minimum amount of time that the “true” state must exist before the

trap state will be fully regarded as true and “true” trap sent. If the condition tests true, and within

this time period returns to false, no “true” trap will be sent.

offtime=”n.nn” – Specifies the minimum amount of time that the “false” state must exist before

the trap state will be fully regarded as false and the “false” trap sent. If the condition tests false,

and within this time period returns to true, no “false” trap will be sent.

sendOnTrue=”x” – Expects a value of 0 to disable, or 1 to enable the sending of a trap when the

condition specified by this rule tests “true”.

sendOnFalse=”x” – Expects a value of 0 to disable, or 1 to enable the sending of a trap when

the condition specified by this rule tests “false”.

sendInform=”x” – Expects a value of 0 to send the message as an SNMP Trap, or value of 1 to

send the message as an SNMP Inform.

devMask=”x” – A 32-bit bit mask that allows sending the same trap to multiple devices. Both

the trap send rules and the trap devices have a “device mask” (devMask). This effectively creates

device groups in a very simple manner. The bit mask found in the trap send rule is logically

ANDed with the bit mask in the device table entry. If the result is non-zero, then the trap is sent

to this device.

repcounttrue=”n” – Used to repeat the trap this number of times when true. Traps are not

acknowledged, so this provides a means of repeating the same Trap message to better ensure

delivery. Set to -1 to repeat indefinitely while condition tests true.

repcountfalse=”n” – Used to repeat the trap this number of times when false. Traps are not

acknowledged, so this provides a means of repeating the same Trap message to better ensure

delivery. Set to -1 to repeat indefinitely while condition tests false.

reptime=”n.nn” – Specifies the amount of time to wait in between repeated sending of the same

Trap message as indicated by the repcount attributes above.

truemsg=”xxxx” – Provides a user defined message that will be delivered as one of the varbinds

in any “true” Trap or Inform message sent.

falsemsg=”xxxx” – Provides a user defined message that will be delivered as one of the varbinds

in any “false” Trap or Inform message sent.

SNMP Agent CSV Files

A CSV file may be imported to configure various aspects of the IoTServer (or Babel Buster

gateway). A single CSV file may contain multiple sections. When a file including an “Objects”

section is imported by the Data Engine, local objects will be configured. When a file including

one or more “Modbus” sections is imported by an instance of the Modbus Engine, Modbus

 BB4-8422 SNMP Agent

Page 31

gateway functionality will be configured. The same Modbus file may be imported by a Modbus

Client or Modbus Server, and either RTU or TCP, and only those sections of interest to that

Modbus function will be imported. The CSV file may also contain one or more SNMP sections,

and so forth.

A section begins when the word “Begin” appears in the first column of a line. All lines up to and

including a line that begins with the word “End” will be taken to be part of that section.

The line immediately following the “Begin” line must be a header line. A Header line is one

which labels the columns of data that will follow the Header line.

All lines following the Header line are data lines that are expected to contain the same number of

columns as the Header line, and whose contents are defined by the labels found in each column

of the Header line.

Labels in the section Begin and End lines, and labels in the Header line are NOT case sensitive

and will be interpreted equally whether upper case, lower case, or some combination of both (for

readability).

Labels may NOT contain embedded spaces. A label is terminated by a comma, line-end, or

space. Labels may not be encapsulated in quote characters; however, data content in data lines

may be encapsulated in quote characters and may contain embedded spaces or blanks if quoted.

Some labels in the Header line may be considered optional. The minimum required columns are

indicated in the definition of each data section.

Columns in the Header line do not have to follow any particular order. They may be rearranged

to the user’s liking. The only restriction is that data in subsequent data lines must match up with

the labels placed in the Header line. Data lines may contain fewer columns than the Header line,

but may not contain more. Data columns that the user wishes to deliberately omit, but omit

between included columns, should be indicated by place holder commas (which will simply

appear as blank cells in a spread sheet program).

A Begin line will contain three columns:

Column 1: BEGIN

Column 2: Function as noted below

Column 3: Sub-function as noted in definition of the Function.

Functions may be any of the following (with this listed expanded from time to time):

 LOCALDATA

 MODBUS

 SNMP

Sub-functions:

SNMP (client)

 BB4-8422 SNMP Agent

Page 32

 DEVICES

 READMAPS

 WRITEMAPS

 WALKRULES

SNMP (agent)

 MIBVARS

 DEVICES

 TRAPSENDRULES

SNMP (trap receiver)

 TRAPRECVRULES

NOTE: The same SNMP CSV file may NOT contain both client and server sections as

DEVICES becomes ambiguous. SNMP requires different applications for different purposes

(csiSnmpClient, csiSnmpAgent, csiSnmpTrapRecv). A fourth application, csiTrapHandler, is

also associated with csiSnmpAgent.

SNMP Agent (Server) Example

BEGIN,SNMP,MIBVARS

BRANCH,INDEX,OBJECT,SCALE

1,1,1,0.000000

1,2,2,0.000000

1,3,3,0.000000

1,4,4,10.000000

1,5,5,100.000000

2,1,3,0.000000

3,1,4,10.000000

3,2,5,100.000000

4,1,6,0.000000

4,2,7,0.000000

END

BEGIN,SNMP,DEVICES

NUMBER,PEERNAME,VERSION,COMMUNITY,DEVMASK,NAME

1,192.168.1.109,2,special,0001,Dell

END

BEGIN,SNMP,TRAPSENDRULES

BRANCH,INDEX,TEST,SENDONTRUE,SENDONFALSE,CONDOBJ,CONDVAL,HYST,DE

VMASK,REPTRUE,REPFALSE,REPTIME,ONTIME,OFFTIME,TRUEMSG,FALSEMSG

1,1,GT,Y,Y,0,10.000000,0.000000,0001,0,0,0.000000,0.000000,0.000000,Value is up,value is

down

END

 BB4-8422 SNMP Agent

Page 33

SNMP (agent/server) MIBVARS Section

Branch – Specifies which of the 4 data branches of the MIB this object should be made

available in. Data will be automatically converted as necessary. Object type does not matter.

Regardless of the local object’s native data type, the data will be presented to SNMP according

to the format for that branch.

Branch number Data format

1 Signed 32-bit integer (INTEGER)

2 Unsigned 64-bit integer (COUNTER64)

3 32-bit or 64-bit floating point (see note)

4 Octet String

Note: The floating point branch (3) will default to OPAQUE DOUBLE (Net-SNMP type), but

may be configured to be 32-bit or 64-bit Opaque Float or Double, or the 32-bit or 64-bit version

of RFC 6340 Octet String interpretation. This selection is a configuration property of the SNMP

agent task.

Index – Refers to the row number in the MIB table, ranging from 1 to maximum table size as set

in the agent task configuration at startup.

Object – Refers to the local object number mapped at this location (branch and index) in the

MIB.

Scale – Applies to integer branches only (disregarded otherwise), and provides the scale factor

by which the local object value is multiplied when responding to an SNMP Get, or by which the

incoming value from an SNMP Set is divided before placing it into the local object.

SNMP (agent/server) DEVICES Section

The DEVICES section in the SNMP server (agent) specify which remote SNMP devices traps or

informs should be sent to as a result of the trap send rules.

Number – A number ranging from 1 to device table size, and was historically referenced in read

and write maps as the device to which the map applied. However, with the implementation of

device mask in the SNMP agent, the mask is what actually determines which device(s) the trap is

sent to, and the same trap may be sent to multiple devices with only one trap rule as a result of

the mask implementation. This number is therefore simply a row number on the list for database

reference.

PeerName – Provides a definition of where on the network to find the device. The peername in

simplest form will be an IP address as illustrated in the XML file example above. However, if

the network has access to a DNS server and that server is configured in the network settings of

the local device, then peername may be any name that can be found via DNS lookup.

 BB4-8422 SNMP Agent

Page 34

Version – Specifies what SNMP version should be used to send the trap, which in turn

determines certain aspects of how the trap message is formatted. Version may be 1, 2, or 3 where

2 really means v2c.

Community – Is the community string as defined for SNMP v1 and v2c.

DevMask – A 32-bit bit mask that allows sending the same trap to multiple devices. Both the

trap send rules and the trap devices have a “device mask” (DevMask). This effectively creates

device groups in a very simple manner. The bit mask found in the trap send rule is logically

ANDed with the bit mask in the device table entry. If the result is non-zero, then the trap is sent

to this device.

Name – Simply a reference in the web UI for the user to identify this device.

SecLevel - Sets security level, 1=noAuthNoPriv, 2=authNoPriv, 3=authPriv. Those are the

SNMP acronyms meaning (1) no authentication or privacy, (2) authentication required but

privacy is not, (3) both authentication and privacy are required. The term “privacy” means

encryption. (Used only for SNMPv3.)

Username - Sets the SNMP security name, analogous to username in SNMP terms. (Used only

for SNMPv3.)

AuthType - Sets the authentication type, may be “NOAUTH”, “MD5”, or “SHA”. It determines

how the username (security name) is hashed when transmitted. (Used only for SNMPv3.)

AuthPhrase - Sets the authentication phrase, analogous to an SNMP password. (Used only for

SNMPv3.)

PrivType - Sets the privacy type, may be “NOPRIV”, “DES”, or “AES”. This determines which

encryption algorithm will be used. (Used only for SNMPv3.)

PrivPhrase - Sets the privacy phrase which is used as the encryption key. (Used only for

SNMPv3.)

EngineId - Sets the engine ID that will be sent with the trap message if SNMPv3. (Used only for

SNMPv3.)

NOTE: The engine ID will be taken as a literal ASCII string (and probably not work) if it does

not begin with “0x”. The recipient of an SNMPv3 trap will generally discard it if the engine ID

does not match its own engine ID. It is necessary to know quite a bit about where you are

sending traps with v3.

SNMP (agent/server) TRAPSENDRULES Section

Branch – Specifies which branch in the MIB that this trap rule applies to, and primarily provides

the means to look up the local object number that should be evaluated.

 BB4-8422 SNMP Agent

Page 35

Index – Specifies the index or row number in the given branch for looking up the local object

nubmer.

Test – Defines the test that should be performed to determine if the trap send rule state is true or

false. Trap state is considered “true” when this condition is met

Test label Test performed on object versus threshold

GT Object greater than threshold

GE Object greater than or equal threshold

LT Object less than threshold

LE Object is less than or equal threshold

EQ Object is equal threshold

NE Object is not equal threshold

DEV Object deviates from threshold by hysteresis amount

DELTA Object has changed by threshold amount

SendOnTrue – Enter “N” to disable, or “Y” to enable the sending of a trap when the condition

specified by this rule tests “true”.

SendOnFalse – Enter “N” to disable, or “Y” to enable the sending of a trap when the condition

specified by this rule tests “false”.

SendInform – Enter “N” to send the message as an SNMP Trap, or “Y” to send the message as

an SNMP Inform.

CondObj – Overrides the conditional value when given (non-zero), and provides the local object

from which a test threshold should be retrieved.

CondVal – Provided no conditional object number is given, this becomes the threshold value for

test purposes.

Hyst – Specifies the hysteresis value to be applied in the test process (see API notes).

DevMask – A 32-bit bit mask that allows sending the same trap to multiple devices. Both the

trap send rules and the trap devices have a “device mask” (devMask). This effectively creates

device groups in a very simple manner. The bit mask found in the trap send rule is logically

ANDed with the bit mask in the device table entry. If the result is non-zero, then the trap is sent

to this device.

RepTrue – Used to repeat the trap this number of times when true. Traps are not acknowledged,

so this provides a means of repeating the same Trap message to better ensure delivery. Set to -1

to repeat indefinitely while condition tests true.

 BB4-8422 SNMP Agent

Page 36

RepFalse – Used to repeat the trap this number of times when false. Traps are not

acknowledged, so this provides a means of repeating the same Trap message to better ensure

delivery. Set to -1 to repeat indefinitely while condition tests false.

RepTime – Specifies the amount of time in seconds to wait in between repeated sending of the

same Trap message as indicated by the repeat count attributes above.

OnTime – Specifies a minimum amount of time in seconds that the “true” state must exist before

the trap state will be fully regarded as true and “true” trap sent. If the condition tests true, and

within this time period returns to false, no “true” trap will be sent.

OffTime – Specifies the minimum amount of time in seconds that the “false” state must exist

before the trap state will be fully regarded as false and the “false” trap sent. If the condition tests

false, and within this time period returns to true, no “false” trap will be sent.

TrueMsg – Provides a user defined message that will be delivered as one of the varbinds in any

“true” Trap or Inform message sent.

FalseMsg – Provides a user defined message that will be delivered as one of the varbinds in any

“false” Trap or Inform message sent.

