
 BB4-8422 Modbus TCP Server

 Page 1

BB4-8422 Modbus TCP Server

Modbus TCP Server Error Counts

 Click the Clear Counts to reset the counts to zero.

 Click the Refresh button to update the counts.

The error counts illustrated on this page refer to errors reported back to remote clients or masters

about their attempt to read/write registers in this IoTServer device.

Modbus TCP Server Address Table

The server address table is used to define the set of Modbus registers that will be visible to other

Modbus clients (masters) when the IoTServer is acting as a Modbus server (slave). The set of

Modbus registers that exist in the IoTServer can be defined only once, but you have the option of

remapping them to different register numbers that will be accessed by secondary ports on the

device. Most often you would use the same register numbers whether they are accessed from

Modbus TCP or Modbus RTU, but it is possible to use a completely different set of numbers for

each different network port.

The address table can only be defined by the Primary Server. All other instances of Modbus

servers or slaves are secondary, and will access the same set of Modbus registers with the option

of remapping them to different numbers.

 BB4-8422 Modbus TCP Server

 Page 2

The address table as it will appear for the Primary Server is illustrated below.

 Click on the register number or pencil icon to jump to the map editing page for this

register.

 Click on the trash can icon to delete this Modbus register.

 Click the Add Maps button for a special version of the map editing page.

The address table maps local objects to Modbus registers. Note that in the above example, the

Modbus registers skip one or more numbers in some instances. Modbus holding registers are by

definition strictly a 16-bit entity. When a data element occupies more than 16 bits, it requires

multiple Modbus registers. Therefore a 32-bit value occupies 2 registers, while a 20-character

string will occupy 10 registers (character strings are packed 2 characters per register). The

number of Modbus registers assigned to each entry in the table is displayed in brackets in the

format column.

 BB4-8422 Modbus TCP Server

 Page 3

Modbus addresses generally refer to holding registers. However, the server will provide access to

the same register numbers as input registers (for reading only), or as coils or discrete inputs (for

reading only). If a single bit register type such as coil is used to access a register number, the

value will be zero if the local object contains a zero, and will provide a one if the local object

contains anything other than zero.

The address table as it will appear for all Secondary Servers is illustrated below. Note that the

editing icons and buttons are not available in the secondary address table.

Modbus TCP Server Address Table Edit

There are two forms of the Modbus server address edit page. When you click on the pencil icon

on the address table page to change a map, you will arrive at the following version of the address

table edit page:

 BB4-8422 Modbus TCP Server

 Page 4

 Click Save to save settings shown on this page, or Exit to return to the table without

change.

If you click on the Add Maps button at the bottom of the address table page, you will arrive at

this version of the address table edit page:

 BB4-8422 Modbus TCP Server

 Page 5

 Click Add to add one or more maps resulting in the addition of one more more Modbus

registers.

 Click Rebuild to rebuild the entire address table (see additional comments below).

 Click Exit to return to address table without any changes.

The parameters for either editing or adding Modbus registers to the address table are as follows.

The following line will indicate "number", "address", or "Modicon register", depending on your

preference which you set under User Settings.

Register Number or Address – Enter the number (starting at 1) or raw address (starting at 0) as

applicable. Do NOT enter 40001 for holding register 1 if you have not selected Modicon as the

display format in your User Settings.

Modicon Register – Enter numbers like 40001 for the first holding register if you have selected

Modicon representation in your User Settings.

The options available on the next line will vary depending on selections made. The following are

a few examples.

Register Format – Select the format of the data contained in the Modbus register(s), not used by

the protocol, but used by the gateway to interpret what the raw increments of 1 or 16 bits should

mean. Select format from the following table.

Format Label Format description

“None” No format defined

“Bit” Single bit, used ONLY for Register Type Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floating point (single or double precision)

 BB4-8422 Modbus TCP Server

 Page 6

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

Register Size – Register size refers to the number of consecutive input or holding registers that

should be read for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit

value would have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit

IEEE 754 floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating

point) would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). Register Size is not used for Coil or Disc

types.

IMPORTANT: If the register size is more than 1, then the next assigned register address must be

incremented by this count.

Unsigned – Select signed or unsigned. Defaults to signed integer. Has no effect on Register

Format other than Int.

Endian Selection – Used when Register Size is greater than 1 to indicate what order the registers

should be interpreted in. Select "low" to indicate that the lowest numbered register contains the

least significant portion of data. Select "high" to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

Local Object – Specifies the local object number that contains the data that will be provided to

external Modbus clients or masters requesting this Modbus "register".

The Rebuild button is a special case button for rebuilding the entire address map. This is the

easiest way to create a default address table. Only the format information is used in this case, for

example:

 BB4-8422 Modbus TCP Server

 Page 7

When using the Rebuild button, the starting number will always be Modbus register 1, and the

starting local object will always be object 1. The rebuild will automatically assign the correct

number of Modbus registers, as determined by the format, to each local object. Modbus register

numbers will be assigned to all available local objects.

Modbus TCP Server Remap Table

This page is where you have the option of remapping the Modbus addresses or register numbers

that some other Modbus client or master would see when polling this device. Start by reviewing

the Server Address Table page if you haven't already.

 Click register number or pencil icon to edit the remap entry.

 Click the trash can icon to delete this remap entry.

 Click the Add Maps button for the "add" version of the edit page.

 Click the Apply button to reload the server's remap table as displayed.

 BB4-8422 Modbus TCP Server

 Page 8

Server Remapping Not Enabled

Note: If the server remapping option is not enabled for this server in its Task Configuration, then

the remap table will be empty and the Add Maps and Apply buttons will be replaced with a

message saying "Server Remapping Not Enabled".

Modbus TCP Server Remap Table Edit

The edit page for server address map is very simple.

Map local will indicate "number", "address", or "Modicon register", depending on your

preference which you set under User Settings.

Register Number or Address – Enter the number (starting at 1) or raw address (starting at 0) as

applicable. Do NOT enter 40001 for holding register 1 if you have not selected Modicon as the

display format in your User Settings.

Modicon Register – Enter numbers like 40001 for the first holding register if you have selected

Modicon representation in your User Settings.

As remote – The remote Modbus register address or number that this local address should be

viewed as by remote clients or masters. Follow the same rules for number, address, or Modicon

register as for the local value.

 BB4-8422 Modbus TCP Server

 Page 9

The Add Maps version of the remap edit page works as follows. Let's assume you start with the

empty table illustrated below. You click the Add Maps button.

The add/edit page is very simple. Follow the same guidelines for local register numbers as noted

above for editing. On this version of the edit, you provide an offset instead of specific register

number. Each remapped number will be the local number plus offset. The other difference on the

Add page is that you also have an ending local number. Click Add to add new entries for the

entire range of addresses.

 BB4-8422 Modbus TCP Server

 Page 10

 BB4-8422 Modbus TCP Server

 Page 11

The result in our example is:

Modbus TCP Server Port Settings

 BB4-8422 Modbus TCP Server

 Page 12

The ports page is only informative for Modbus TCP. There is nothing to change here. You would

change IP address of the IoTServer on the Network page. You would change task configuration

settings starting at the Task Configuration page.

Modbus TCP Server Config File

All of your configuration information is stored in an internal database each time you click the

Save button on any page where configuration entries may be made. To make configuration

portable from one device to another, and for purposes of retaining a backup copy, the

configuration information may be exported and imported as XML or CSV files. This page is

where your configuration file management takes place.

It is important to note that the XML file saved within any one client/server function will contain

the configuration information for only that function. Depending on overall system configuration,

a complete backup may involve more than one XML or CSV file.

 BB4-8422 Modbus TCP Server

 Page 13

XML Files: When an XML file has been selected, click the Load button to clear the

configuration database and reload configuration from the given XML file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in XML format.

You may type in a new name in the file name window for purposes of saving a new file. If you

click the Refresh button, the file name will be restored to the name currently loaded into the

client. The name could have been changed by selecting a file from the list below, or by typing in

a new name. If the displayed name has not yet been used, then Refresh will restore the file name

to what was most recently loaded.

CSV Files: If a CSV file is selected, the Load and Save buttons will change into load/save CSV

buttons. When a CSV file has been selected, click the Load button to clear the configuration

database and reload configuration from the given CSV file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in CSV format.

 BB4-8422 Modbus TCP Server

 Page 14

The drop-down list will show a list of all configuration files currently found in the device's

configuration folder. When you select an XML or CSV file from this list, the name will be

copied to the Load/Save section of this page for pending load or save.

You may view the selected file by simply clicking View. You can delete the file by clicking

Delete.

You may upload files to the IoTServer from your PC. Start by clicking Browse, and then use the

browser's file dialog to locate the file on your PC. Once a file is selected on your PC, click the

"Start upload" button to initiate the transfer.

You may also download files from the IoTServer to your PC. Click the Download button to

transfer the selected file to your PC.

Any time an XML or CSV file is loaded, an error log file is generated. The error log file will be

given the same name as the loaded file, but with ".err" as the suffix instead of ".xml" or ".csv".

You may view the error log by selecting it from the list and clicking View.

Status is normally displayed in a message box at the top of the screen when the load or save

operation is complete. But if you want to double check the status of the previous file operation,

click Check Status.

The task (client or server) needs to be suspended while a file load operation is in progress to

prevent acting on any partial configurations. This suspend/resume operation will normally

happen automatically as part of the sequence invoked by the Load button when loading an XML

file. The task must be explicitly suspended here for importing a CSV file. The Suspend button

 BB4-8422 Modbus TCP Server

 Page 15

will become a Resume button when the task is suspended. Click Resume to continue operation.

The current status is always displayed here.

Modbus TCP Server XML Files

Example XML File

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration>

<server_regs>

<reg addr="0" format="bit" size="1" lowfirst="1" objnum="1"/>

<reg addr="1" format="int" size="1" lowfirst="1" objnum="2"/>

<reg addr="2" format="int" size="2" lowfirst="1" objnum="3"/>

<reg addr="4" format="int" size="4" lowfirst="1" objnum="4"/>

<reg addr="8" format="int" size="1" unsigned="1" lowfirst="1" objnum="5"/>

<reg addr="9" format="int" size="2" unsigned="1" lowfirst="1" objnum="6"/>

<reg addr="11" format="int" size="4" unsigned="1" lowfirst="1" objnum="7"/>

<reg addr="15" format="real" size="2" lowfirst="1" objnum="8"/>

<reg addr="17" format="real" size="4" lowfirst="1" objnum="9"/>

</server_regs>

<remap_regs>

<map localAddr="0" remoteAddr="100"/>

<map localAddr="1" remoteAddr="101"/>

<map localAddr="2" remoteAddr="102"/>

<map localAddr="4" remoteAddr="104"/>

<map localAddr="8" remoteAddr="108"/>

<map localAddr="9" remoteAddr="109"/>

<map localAddr="11" remoteAddr="111"/>

<map localAddr="15" remoteAddr="115"/>

<map localAddr="17" remoteAddr="117"/>

</remap_regs>

</configuration>

Modbus TCP Server <server_regs> Section

Each line in the server_regs portion of the XML file defines one locally known Modbus

“register” which may actually span multiple Modbus addresses.

NOTE: Register configuration does not specify a Modbus register type. This is because all

register addresses in the IoT Server can be accessed as any of the standard register types (coil,

discrete input, input register, or holding register). Therefore, the value at input register address 0

and holding register address 0 will be the same value. When referenced as a coil or discrete input

the same address will appear as 0 if the value is 0, or 1 if the value in anything non-zero. All

local registers are 16 bits regardless of how accessed. The 16-bit value will be processed as 0 or

 BB4-8422 Modbus TCP Server

 Page 16

1 for coil or discrete input. Therefore, writing a 1 to an address as a coil will result in a 16-bit

integer 1 when the same address is accessed as a holding register.

IMPORTANT: There can be only one definition of a primary register map, but there can be

multiple instances of a Modbus server. The secondary servers can only remap the registers

defined by the primary server. The primary definition is found in the <server_regs> section while

remapping is found in the <remap_regs> section. A secondary server will disregard the

<server_regs> section. The primary server can be either a Modbus RTU Slave or Modbus TCP

Server.

XML attributes for each register:

addr=”n” – (Json “address”, integer) – Modbus address in the range of 0..65535. Note that

Modbus address 0 is most often referred to as “Register 1” or Modicon 40001 if it is a holding

register.

format=”xxx” (Json “format”, character string, and “formatCode”, integer) – Specifies the

Modbus format in which data should be interpreted. Valid formats for XML and Json are shown

below:

XML value Format descrip�on

“none” No format defined

“bit” Single bit (coil, discrete only)

“int” Integer (16-, 32-, or 64-bit)

“real” Floa"ng point (single or double)

“char” ASCII character string

“mod10” Schneider Electric Mod10 format

size="n" – (Json “size”, integer) – Specifies the number of 16-bit address locations that make up

this “register”. Valid sizes by register format are as follows:

Type Number of registers

Bit 1

Integer 1, 2, 4 (for 16-, 32-, 64-bit)

Real 2, 4 (for single, double precision)

Character 1..63 (registers - 2 characters per register)

 BB4-8422 Modbus TCP Server

 Page 17

Mod10 2, 3, 4

Note: The maximum size for ‘char’ is 63 registers, which means 126 characters is the maximum

string length. Size is in registers, not characters.

unsigned=”n” – (Json “unsigned”, integer) – Applies only to integer, and specifies that the

integer should be treated as unsigned in “n” is “1”. Integers default to signed (n=0).

lowfirst=”n” – (Json “littleEndian”, integer) – Applies to any register greater than 16 bits

(except “char”), meaning the data value consists of 2 or more 16-bit registers. When lowfirst

n=1, the least significant data will be found in the lowest numbered or first Modbus register

address of the “register” that spans multiple addresses. When lowfirst n=0 (or omitted), the most

significant data will be found in the lowest or first Modbus register address. For “char” registers,

the start of the string will always be in the lowest or first Modbus address.

objnum=”n” – (Json “localObject”, integer) – Specifies the IoT Server global data object that

will be provided via this Modbus register. The global object data type and Modbus register data

format do not need to match. Data will be converted as applicable, including numeric to

character string conversion.

Modbus TCP Server <remap_regs> Section

Each line contains simply a local address and a remote address. The local address is expected to

reference a register previously created in the server_regs part of the file (by the primary server).

The remote address is any valid Modbus address that will be used to reference this local register.

There may fewer remap_regs entries than server_regs entries, but generally not more.

localAddr=”n” – (Json “localAddr”, integer) – Specifies local Modbus address, namely the

Modbus address established by the Register Configuration above.

remoteAddr=”n” – (Json “remoteAddr”, integer) – Specifies the address of the same register as

seen by a remote client (master) querying our local Modbus device.

Modbus TCP Server CSV Files
Modbus Server Example – Primary Server

The following illustrates a CSV file for the primary instance of Modbus Server, which can be

assigned to either an RTU or TCP channel. There can be only one instance of a primary server,

and this instance establishes the correlation of local objects to Modbus registers. Secondary

instances of Modbus servers will refer to the primary server’s mapping of objects to register

addresses, optionally with remapping (see below).

 BB4-8422 Modbus TCP Server

 Page 18

Begin,Modbus,ServerMaps

LocalObj,RegAddr,RegFormat,RegSize,Unsigned,LittleEnd

1,0,INT,1,Y,N

2,1,INT,1,N,N

3,2,INT,4,N,Y

4,6,REAL,2,N,Y

5,8,REAL,2,N,Y

6,10,CHAR,10,N,N

7,20,CHAR,10,N,N

End

MODBUS (server/slave) SERVERMAPS Section

LocalObj – Specifies the local object number that contains the data that will be provided to

external Modbus clients or masters requesting this Modbus “register”.

RegAddr – Raw 0-indexed address to be assigned to this register.

RegFormat – Format of the data contained in the Modbus register(s), not used by the protocol,

but used by the gateway to interpret what the raw increments of 1 or 16 bits should mean. Select

format from the following table.

Format Label Format descrip�on

“None” No format defined

“Bit” Single bit, used ONLY for RegType Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floa"ng point (single or double precision)

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

RegSize – Register size refers to the number of consecutive input or holding registers should be

read for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit value would

have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit IEEE 754

floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating point)

would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). RegSize is not used for Coil or Disc

types.

 BB4-8422 Modbus TCP Server

 Page 19

IMPORTANT: If the register size is more than 1, then the next assigned register address must be

incremented by this count.

Unsigned – Indicate “Y” if unsigned, or “N” if signed. Defaults to signed integer. Has no effect

on RegFormat other than Int.

LittleEnd – Used when RegSize is greater than 1 to indicate what order the registers should be

interpreted in. Enter “Y” to indicate that the lowest numbered register contains the least

significant portion of data. Enter “N” or omit to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

Modbus Server Example – Secondary Server

The following illustrates the CSV file or section for remapping register addresses in an instance

of a Modbus server. The remapping can be optionally included in the primary instance, but is

usually more commonly used in a secondary instance of server. The remapping effectively

creates a different view of the same set of registers defined by the primary server. For example,

in the CSV below, Modbus register 0 is seen at address 100 by any client requesting registers

from this instance of the server. Different instances of the server will normally run on different

ports in the system.

Begin,Modbus,ServerRemaps

LocalAddr,RemoteAddr

0,100

1,101

2,102

6,106

8,108

10,110

20,120

End

MODBUS (server/slave) SERVERREMAPS Section

LocalAddr – The local Modbus register addressed assigned by the primary server. This address

must exist in the register assignments made by the primary server.

RemoteAddr – The remote Modbus register address that this local address should be viewed as.

