
 BB4-8422 Modbus TCP Client

Page 1

BB4-8422 Modbus TCP Client

Modbus TCP Client Error Counts

 Click the Clear Counts to reset the counts to zero.

 Click the Refresh button to update the counts.

This page shows an error summary on a device by device basis. There will be one line per each

device configured for access by the Modbus TCP Client. If there is a non-zero error count for a

device, you can begin to track down where this error is occurring by viewing the Read and Write

Data pages for the Modbus TCP Client.

Socket errors will be an error code reported by the system if nonzero. Refer to Socket Errors at

the end of this document for a list of these errors.

Modbus TCP Client Read Data

 BB4-8422 Modbus TCP Client

Page 2

This diagnostic page shows you the most recent data obtained by the respective read map. Most

importantly, it shows error indications on a map by map basis.

Modbus TCP Client Write Data

 BB4-8422 Modbus TCP Client

Page 3

This diagnostic page shows you the most recent data written by the respective write map. Most

importantly, it shows error indications on a map by map basis.

Configuration

Select Modbus TCP Client from the sidebar menu to access Modbus TCP Client Configuration.

The Modbus TCP Client Configuration page will have the tabs illustrated above. Click on the

tabs to navigate to the areas of interest which are described in detail at the links below.

You may edit individual maps or devices by first navigating to the tab/page listing those items.

Then click the edit icon (pencil). This will take you to the respective "Edit" page listed below.

 BB4-8422 Modbus TCP Client

Page 4

Modbus TCP Client Read Maps

Modbus TCP Client Read Maps are where you configure this device to read Modbus registers

from other Modbus TCP devices, and store that data in local data objects. This page shows a list

of currently configured read maps.

When Modbus display setting "Number" is selected under User Settings, Modbus registers will

be displayed as type (e.g. holding register) and register number.

 BB4-8422 Modbus TCP Client

Page 5

 Click on the map number or pencil icon to jump to the map editing page for this map.

 Click on the trash can icon to delete this map.

When Modbus display setting "Modicon" is selected under User Settings, Modbus registers will

be displayed as a single value in Modicon format, e.g. 40001 for holding register 1.

 Click on the map number or pencil icon to jump to the map editing page for this map.

 Click on the trash can icon to delete this map.

 BB4-8422 Modbus TCP Client

Page 6

To add or insert new maps, enter a number of maps to add, and select a starting point. Then click

the Insert button.

To copy one or more maps and insert a duplicate copy of them at another point in the list, select

the range to copy, select the insert point, and click Copy.

The Set Source Info button is a diagnostic tool. You do not want multiple read maps (from all

protocols combined) trying to store data into the same local object. Doing so would result in

erroneous data (data would jump back and forth showing the most recently read data from any

source). If you only have one source of data, then this isn't an issue. But if there will be multiple

sources of data, then use the Set Source Info button to "claim" objects for this protocol function

(e.g. Modbus TCP Read).

If objects have already been claimed in another protocol and you try to claim the same objects,

you will see one or more error messages displayed at the top of the screen. Go to the Data

Objects -> Object Status page to see where objects have been claimed. The Clear Source Info

button is also found on the Data Objects -> Object Status page. To clear the claims and try again,

use that button. Clicking the Set Source Info button more than once will also result in error

messages since objects have already been claimed once.

Modbus TCP Client Read Map Edit

Modbus TCP Client Read Maps are where you configure this device to query other Modbus TCP

devices for data, and store that data in local data objects. This page is where you enter the

various parameters to make that happen.

 BB4-8422 Modbus TCP Client

Page 7

Map Number – Used as a reference in the map list for ordering the maps. Polling is done in

round robin fashion in the order of map number.

The appearance of the following line will vary depending on your user settings. You have the

option of displaying Modbus registers as raw address (0-indexed), register number (1-indexed),

or Modicon format (e.g. 40001 style).

The following variations all refer to exactly the same register:

Click the Check to validate a Modicon number.

The options available on this line will vary depending on selections made. The following are a

few examples.

Register Type – Modbus register types available are listed in the following table. These labels

are illustrated here as recognized in XML or CSV files, but are further annotated on the web

page.

Label Modbus Register type

“none” No register defined

 BB4-8422 Modbus TCP Client

Page 8

“Coil” Coil

“Disc” Discrete Input

“Input” Input Register

“Hold” Holding Register

Register Number or Address – Enter the number (starting at 1) or raw address (starting at 0) as

applicable. Do NOT enter 40001 for holding register 1 if you have not selected Modicon as the

display format in your User Settings.

Modicon Register – Enter numbers like 40001 for the first holding register if you have selected

Modicon representation in your User Settings.

Register Format – Select the format of the data contained in the Modbus register(s). This is not

used by the protocol, but is used by the gateway to interpret what the raw increments of 1 or 16

bits should mean. Select format from the following table.

Format Label Format description

“None” No format defined

“Bit” Single bit, used ONLY for Register Type Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floating point (single or double precision)

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

Register Size – Register size refers to the number of consecutive input or holding registers that

should be read for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit

value would have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit

IEEE 754 floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating

point) would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). Register Size is not used for Coil or Disc

types.

Unsigned – Select signed or unsigned. Defaults to signed integer. Has no effect on Register

Format other than Int.

Endian Selection – Used when Register Size is greater than 1 to indicate what order the registers

should be interpreted in. Select "low" to indicate that the lowest numbered register contains the

least significant portion of data. Select "high" to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

 BB4-8422 Modbus TCP Client

Page 9

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

Device – Select a device from the TCP Device list that should be accessed for this read attempt

on a TCP network.

Unit – Unit number to be included in the TCP request, will default to 1 if not given or is set to

zero. Web page will force it to default to 1, but is optional for CSV or XML import.

Mask – A bit mask given as an 8-digit hexadecimal value, if non-zero. The mask operation is

skipped if mask value is zero, or register format is not Int (integer). When the data of interest is a

single bit, or bit field less than the full register width, the Mask is used. When the Modbus

register is read, its data is bit-wise ANDed with the Mask, then right justified so that the least

significant mask bit becomes the least significant data bit. The result is then placed in the local

data object selected by the read map.

Scale – Register content is multiplied by this value, if non-zero, before being placed into the

local object. Scale is treated mathematically as 1 if omitted (set to zero).

Offset – This value is added to the register content (after being multiplied by scale) before being

placed into the local object.

NOTE: The order of operation is as follows: (1) read Modbus register; (2) apply mask if

applicable; (3) apply scale if non-zero; (4) apply offset. Result is then placed in local object.

Poll Time – Poll time in seconds (can be fractional). The sets the rate at which the remote

Modbus register will be read. This poll time is not guaranteed to be met. Polling is done in

 BB4-8422 Modbus TCP Client

Page 10

round-robin fashion. In a very busy system, more than this time may expire before the next poll.

If less than this time has expired, then the system will wait this amount of time until polling

again.

Local Object – Local object number that the result of the Modbus read operation should be

placed into.

Default Value – Provides the default value that the local object should be set to in the event the

FailCount is exceeded.

Fail Count – Optional, provides a count of read failures, if non-zero, that can occur before the

local object will be set to the default value given in this map. If zero, the default value will never

be applied. If 1, then the default value will be applied upon the first failure (probably not

recommended), and so on. The count is reset by a successful read.

Index Object – Optional, allows for selectively enabling this read operation. If an index object

(local object number) is given, and its value matches the index value, then this read operation

will take place. If an index object is given but the local object’s value does not match the index

value, then this read operation will be skipped.

Index Value – Optional, used in conjunction with Index Object (see note above).

To illustrate the use of Mask, consider the two following read maps. Note that they are reading

the same register from the remote Modbus device. But the mask value is different.

 BB4-8422 Modbus TCP Client

Page 11

The value derived from the first read map will be an 8-bit value taken from the low order byte of

the 16-bit holding register. The value derived from the second read map will be an 8-bit value

taken from the high order byte of the 16-bit holding register. This is how you "unpack" values

from a packed Modbus register.

Another common requirement is to pick single bits out of a holding register. For a single bit, the

Mask value will be a single bit like 00000001, 00000002, 00000004, 00000008, etc.

If the maps such as the two illustrated above are placed in sequential order in the read map list,

they will result in only a single Modbus read request, and the data will be shared with all

sequential maps requesting the same register from the same device.

Modbus TCP Client Write Maps

 BB4-8422 Modbus TCP Client

Page 12

Modbus TCP Client Write Maps are where you configure this device to write to Modbus

registers in other Modbus TCP devices, taking data to be written from local data objects. This

page shows a list of currently configured write maps.

When Modbus display setting "Number" is selected under User Settings, Modbus registers will

be displayed as type (e.g. holding register) and register number.

 BB4-8422 Modbus TCP Client

Page 13

 Click on the map number or pencil icon to jump to the map editing page for this map.

 Click on the trash can icon to delete this map.

When Modbus display setting "Modicon" is selected under User Settings, Modbus registers will

be displayed as a single value in Modicon format, e.g. 40001 for holding register 1.

 Click on the map number or pencil icon to jump to the map editing page for this map.

 Click on the trash can icon to delete this map.

 BB4-8422 Modbus TCP Client

Page 14

To add or insert new maps, enter a number of maps to add, and select a starting point. Then click

the Insert button.

To copy one or more maps and insert a duplicate copy of them at another point in the list, select

the range to copy, select the insert point, and click Copy.

Modbus TCP Client Write Map Edit

Modbus TCP Client Write Maps are where you configure this device to write to Modbus

registers in other Modbus TCP devices, taking data to be written from local data objects. This

page is where you enter the various parameters to make that happen.

Map Number – Used as a reference in the map list for ordering the maps. Polling is done in

round robin fashion in the order of map number.

Source Object – Specifies the local object number that contains the data that should be sent by

this write map.

Scale – Provides a scale factor if non-zero (has the effect of being 1 if zero). Data to be written is

retrieved from the local object and then multiplied by this scale factor before being sent to the

remote Modbus device. Applies to numeric values and numeric local objects only.

 BB4-8422 Modbus TCP Client

Page 15

Offset – Provides an offset to work in conjunction with scale factor. This value is added to the

value retrieved from the local object (after being multiplied by scale) before being sent to the

remote Modbus device. Applies to numeric values and numeric local objects only.

Mask – A bit mask given as a 8-digit hexadecimal value, if non-zero. The mask operation

skipped if mask value is zero, or register format is not Int (integer). When the data of interest is a

single bit, or bit field less than the full register width, the Mask is used. The process used in a

read operation is reversed here. First, the mask is right justified so that the least significant “1”

bit is in the least significant data position. That mask is then logically ANDed with the data

found in the local object. The result is then left justified back into the position originally

indicated by the mask. This value is now ready to be written to the Modbus register, pending any

additional operation such as the Fill mask.

Fill – An additional bit mask given as a 4-digit or 8-digit hexadecimal value. This mask is

logically ORed with the result of the Mask operation before the final result is written to the

Modbus register. The Fill mask has the effect of making sure certain bits in the register are

always set.

NOTE: The order of operation is as follows, operating on data retrieved from the local object: (1)

apply scale if nonzero; (2) apply offset; (3) apply mask if applicable; (4) apply fill if applicable;

(5) write to Modbus register.

IMPORTANT: In order for the gateway to accumulate all data for a "packed" register using

mask (and optionally fill) into a single write request, it is required that all write maps to the same

register be in sequential (contiguous) order. If the write maps are split up such that multiple

writes to the same register occur, then the later write will erase the content written by the earlier

write.

The appearance of the following line will vary depending on your user settings. You have the

option of displaying Modbus registers as raw address (0-indexed), register number (1-indexed),

or Modicon format (e.g. 40001 style).

The following variations all refer to exactly the same register:

 BB4-8422 Modbus TCP Client

Page 16

Click the Check to validate a Modicon number.

The options available on this line will vary depending on selections made. The following are a

few examples.

Register Type – Modbus register types available are listed in the following table. These labels

are illustrated here as recognized in XML or CSV files, but are further annotated on the web

page.

Label Modbus Register type

“none” No register defined

“Coil” Coil

“Disc” Discrete Input

“Input” Input Register

“Hold” Holding Register

Register Number or Address – Enter the number (starting at 1) or raw address (starting at 0) as

applicable. Do NOT enter 40001 for holding register 1 if you have not selected Modicon as the

display format in your User Settings.

Modicon Register – Enter numbers like 40001 for the first holding register if you have selected

Modicon representation in your User Settings.

 BB4-8422 Modbus TCP Client

Page 17

Register Format – Select the format of the data contained in the Modbus register(s). This is not

used by the protocol, but is used by the gateway to interpret what the raw increments of 1 or 16

bits should mean. Select format from the following table.

Format Label Format description

“None” No format defined

“Bit” Single bit, used ONLY for Register Type Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floating point (single or double precision)

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

Register Size – Register size refers to the number of consecutive input or holding registers that

should be written for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit

value would have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit

IEEE 754 floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating

point) would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). Register Size is not used for Coil or Disc

types.

Unsigned – Select signed or unsigned. Defaults to signed integer. Has no effect on RegFormat

other than Int.

Endian Selection – Used when Register Size is greater than 1 to indicate what order the registers

should be interpreted in. Select "low" to indicate that the lowest numbered register contains the

least significant portion of data. Select "high" to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

Device – Select a device from the TCP Device list that should be accessed for this write attempt

on a TCP network.

Unit - Unit number to be included in the TCP request, will default to 1 if not given or is set to

zero. Web page will force it to default to 1, but is optional for CSV or XML import.

 BB4-8422 Modbus TCP Client

Page 18

Function code 5-6 – Check this box to force single register writes to use Modbus function 5 to

write a single coil, or function 6 to write a single holding register. Function codes will default to

“write multiple” function codes 15 and 16 instead of 5 and 6 respectively if this box is not

checked. This box only appears when the register count to be written is one.

Send Periodic – Uncheck to disable, check to enable periodic writing of the Modbus register at

the poll rate given by Poll Time.

Poll Time – Poll time in seconds, can be fractional. This poll time is not guaranteed to be met.

Polling is done in round-robin fashion. In a very busy system, more than this time may expire

before the next poll. If less than this time has expired, then the system will wait this amount of

time until polling again. The sets the rate at which the remote Modbus register will bewritten,

provided “Send Periodic” has been enabled. This poll time will be disregarded if Send Periodic is

not enabled.

Send On Delta – Uncheck to disable, or check to enable the “send on delta” feature where

Modbus writes are made based on changes in the local object value (see delta below).

Delta – Specifies the margin by which the local object value should change before sending

another Modbus write request to the remote Modbus device. Once the changed value has been

sent, the new local value is retained for future comparison in determining subsequent additional

change. The delta value is disregarded if Send On Delta is not enabled. Note that a delta of zero

is treated as a special case: Any update to the local object by any process will result in a new

Modbus write request.

Min Quiet Time – Time in seconds, can be fractional. This specifies the mínimum amount of

time that should elapse between sending of write requests for this write map. The minimum quiet

time has the effect of throttling network traffic, especially where delta is a small value.

 BB4-8422 Modbus TCP Client

Page 19

Send Max Quiet – Uncheck to disable or check to enable the Max Quiet Time feature. If

disabled, the Max Quiet Time value will be disregarded.

Max Quiet Time – “Max Quiet” time in seconds, can be fractional. If the Modbus register has

not been written either as a result of poll timing or value changing by delta within this time

period, then write request will be made anyway. This specifies the maximum amount of time that

should expire without any write to the Modbus register for any reason.

Index Object – Optional, allows for selectively enabling this write operation. If an index object

(local object number) is given, and its value matches the index value, then this write operation

will take place. If an index object is given but the local object’s value does not match the index

value, then this write operation will be skipped.

Index Value – Optional, used in conjunction with Index Object (see note above).

Modbus TCP Devices

 BB4-8422 Modbus TCP Client

Page 20

The Modbus TCP Devices page is where you set up the list of Modbus TCP servers (slaves) that

this IoTServer will read from and write to while acting as a Modbus TCP client (master).

 Click on the device number or pencil icon to jump to the device editing page for this

device.

 Click on the trash can icon to delete this device.

 BB4-8422 Modbus TCP Client

Page 21

To add additional devices to the list, enter a device number to be added, and click Add Device. If

the device number already exists, you will simply be editing that device. If the device number

did not exist, you will create that device by editing it.

Modbus TCP Client Device Edit

The Modbus TCP Devices page is where you set up the list of Modbus TCP servers (slaves) that

this IoTServer will read from and write to while acting as a Modbus TCP client (master). The

full set of parameters required for each device is set up once here, and then referenced by device

number in any number of read or write maps.

Number – Device number that will be reference in read and write maps.

Name – Arbitrary name for this device, used only as a reference in the web UI.

RemoteIP – The IP address in “a.b.c.d” form that the TCP client will attempt to connect to for

read and write maps referencing this device number.

Port – The port number that should be opened at the remote IP address given. Port number will

default to 502 if not given or set to zero.

Unit – An optional unit number that will be used when connecting to this remote TCP device. If

none is given or is set to zero, then unit 1 will be used.

 BB4-8422 Modbus TCP Client

Page 22

Poll Time – The default poll time that will be used if none is given explicitly in individual read

and write maps.

Timeout – The amount of time that the client should wait before flagging the attempted read or

write with a “no response” error.

Modbus TCP Client Config File

All of your configuration information is stored in an internal database each time you click the

Save button on any page where configuration entries may be made. To make configuration

portable from one device to another, and for purposes of retaining a backup copy, the

configuration information may be exported and imported as XML or CSV files. This page is

where your configuration file management takes place.

It is important to note that the XML file saved within any one client/server function will contain

the configuration information for only that function. Depending on overall system configuration,

a complete backup may involve more than one XML or CSV file.

XML Files: When an XML file has been selected, click the Load button to clear the

configuration database and reload configuration from the given XML file.

 BB4-8422 Modbus TCP Client

Page 23

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in XML format.

You may type in a new name in the file name window for purposes of saving a new file. If you

click the Refresh button, the file name will be restored to the name currently loaded into the

client. The name could have been changed by selecting a file from the list below, or by typing in

a new name. If the displayed name has not yet been used, then Refresh will restore the file name

to what was most recently loaded.

CSV Files: If a CSV file is selected, the Load and Save buttons will change into load/save CSV

buttons. When a CSV file has been selected, click the Load button to clear the configuration

database and reload configuration from the given CSV file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in CSV format.

The drop-down list will show a list of all configuration files currently found in the device's

configuration folder. When you select an XML or CSV file from this list, the name will be

copied to the Load/Save section of this page for pending load or save.

You may view the selected file by simply clicking View. You can delete the file by clicking

Delete.

You may upload files to the IoTServer from your PC. Start by clicking Browse, and then use the

browser's file dialog to locate the file on your PC. Once a file is selected on your PC, click the

"Start upload" button to initiate the transfer.

 BB4-8422 Modbus TCP Client

Page 24

You may also download files from the IoTServer to your PC. Click the Download button to

transfer the selected file to your PC.

Any time an XML or CSV file is loaded, an error log file is generated. The error log file will be

given the same name as the loaded file, but with ".err" as the suffix instead of ".xml" or ".csv".

You may view the error log by selecting it from the list and clicking View.

Status is normally displayed in a message box at the top of the screen when the load or save

operation is complete. But if you want to double check the status of the previous file operation,

click Check Status.

The task (client or server) needs to be suspended while a file load operation is in progress to

prevent acting on any partial configurations. This suspend/resume operation will normally

happen automatically as part of the sequence invoked by the Load button when loading an XML

file. The task must be explicitly suspended here for importing a CSV file. The Suspend button

will become a Resume button when the task is suspended. Click Resume to continue operation.

The current status is always displayed here.

Modbus TCP Client XML Files

Example XML File

<?xml version="1.0" encoding="ISO-8859-1" ?>

<configuration>

<modbus_client_devices>

<dev id="1" ipaddr="192.168.1.87" unit="1" name="BB2-6010"/>

</modbus_client_devices>

<modbus_client_read>

<map objnum="1" type="hold" addr="0" format="int" size="1" unsigned="1" mask="f" dev="1"

poll="2.0"/>

<map objnum="2" type="hold" addr="0" format="int" size="1" unsigned="1" mask="f0"

dev="1" poll="2.0"/>

 BB4-8422 Modbus TCP Client

Page 25

<map objnum="3" type="hold" addr="1" format="int" size="1" dev="1" poll="2.0"/>

</modbus_client_read>

<modbus_client_write>

<map objnum="3" type="hold" addr="2" format="int" size="1" dev="1" poll="2.0"/>

<map objnum="1" type="hold" addr="3" mask="f" format="int" size="1" unsigned="1" dev="1"

poll="2.0"/>

<map objnum="2" type="hold" addr="3" mask="f0" fill="100" format="int" size="1"

unsigned="1" dev="1" poll="2.0"/>

<map objnum="1" type="hold" addr="4" format="int" size="1" dev="1" poll="2.0"/>

<map objnum="2" type="hold" addr="5" format="int" size="1" dev="1" poll="2.0"/>

</modbus_client_write>

</configuration>

Modbus TCP Client <modbus_client_devices> Section

id=”n” – Specifies the device number that will be referenced in read and write maps. The client

uses the device number found in the read or write map to look up the Modbus TCP IP address in

this table.

ipaddr=”a.b.c.d” – IP address of remote Modbus TCP server (slave).

port=”n” – Port number to query on remote Modbus TCP device, defaults to the standard

Modbus TCP port 502 if not provided or is zero.

unit=”n” – Unit number to include in Modbus TCP query, sometimes used to route queries to

multiple RTU devices on the other side of a TCP gateway. Note: This unit number is only a

default value; the unit number given in the read or write map (if any) will override this value.

rate=”n” – The default poll rate for read or write maps used when no poll time is provided

explicitly in the read or write map.

timeout=”n” – Timeout for slave/server response. If no reply received in response to a query

within this amount of time, the attempt is flagged as a “no response” error.

name=”xxx” – A name given for reference purposes only, used on web pages and in XML files,

but has no bearing on Modbus protocol activity.

Modbus TCP Client <modbus_client_read> Section

Map Number is implied by order in XML – Used as a reference in the map list for ordering the

maps. Polling is done in round robin fashion in the order of map number.

 BB4-8422 Modbus TCP Client

Page 26

type=”xxx” – Specifies Modbus register type to read. Valid values in XML and are shown

below:

XML value Modbus Register type

“none” No register defined

“coil” Coil

“disc” Discrete Input

“input” Input Register

“hold” Holding Register

addr=”n” – Specifies register address to read. Note that this is address starting from zero, not

register number starting from one like most Control Solutions gateways. Valid address range is

0..65535. NOTE: The Web UI provides the means to let the user switch between display of

addresses (0-indexed), register numbers (1-indexed), or Modicon notation (where number and

type are combined into one value).

format=”xxx” – Specifies the format in which the Modbus data should be interpreted. Valid

formats for XML are shown below:

XML value Format descrip�on

“none” No format defined

“bit” Single bit (coil, discrete only)

“int” Integer (16-, 32-, or 64-bit)

“real” Floa)ng point (single or double)

“char” ASCII character string

“mod10” Schneider Electric Mod10 format

size=”n” – Specifies the size of the object in number of Modbus registers. All Modbus registers

are either a single bit or 16 bits. It is up to the application to interpret multiple registers as other

data sizes, which the client does automatically when configured to read multiple registers. Only

certain combinations of data formats and register counts are valid. Note that character strings are

defined as a number of registers each holding two ASCII characters.

Valid sizes by register format are as follows:

 BB4-8422 Modbus TCP Client

Page 27

Type Number of registers

Bit 1

Integer 1, 2, 4 (for 16-, 32-, 64-bit)

Real 2, 4 (for single, double precision)

Character 1..63 (registers - 2 characters per register)

Mod10 2, 3, 4

unsigned=”n” – Registers default to being treated as signed when integer. If this attribute value

is non-zero, then it will be treated as unsigned.

lowfirst=”n” – Specifies “little endian” when value is non-zero. Defaults to “big endian” if

omitted or value is zero. In “little endian” mode, the least significant data is in the first or lowest

numbered Modbus register. In “big endian” mode, the most significant data is in the first or

lowest numbered Modbus register. This only applies to multiple-register non-character data

entities (e.g. 32-bit integer). Character strings are always stored with the first character in the

string located in the first or lowest numbered Modbus register.

dev=”n” – Specifies the device to look up in the Modbus TCP device table to obtain the IP

address, port, etc, of the Modbus server/slave to query. (Not included in Modbus RTU XML

files.)

unit=”n” – Specifies the unit number to include in the TCP query (same as slave for RTU).

scale=”n” – Scale factor – data read from a Modbus device is multiplied by the scale factor, then

offset is added, to produce a final result that is placed into the local data object. If “mask” is also

provided, mask is applied before scale and offset.

offset=”n” – Offset – added to data read from Modbus device (see scale).

poll=”n” – Poll time in seconds determines how often this remote Modbus register will be read.

objnum=”n” – Specifies the local object where the result of the Modbus read should be placed.

mask=”n” – Optional, and if non-zero, then the data received from the remote Modbus device is

bitwise AND-ed with this bit mask, and then shifted right so that the least significant bit in the

resulting value is the least significant bit retained by the mask. Note that mask is only valid when

the Modbus register format is integer.

default=”n” – Used in conjunction with failCount, if successive read attempts fail, the local

object will be set to this default value.

 BB4-8422 Modbus TCP Client

Page 28

maxfail=”n” – Optional, specifies the number of read failures (if non-zero) required before the

local object will be set to the default value. If set to zero, then the local object will always retain

the most recently received data value, if any, regardless of how old it is.

indexobj=”n” – Optional, allows for selectively enabling this read operation. If an index object

(local object number) is given, and its value matches the indexValue, then this read operation

will take place. If an indexObject is given but the local object’s value does not match the

indexValue, then this read operation will be skipped.

indexval=”n” – Optional, used in conjunction with indexObject (see note above).

Modbus TCP Client <modbus_client_write> Section

Map Number is implied by order in XML – Used as a reference in the map list for ordering the

maps. Polling is done in round robin fashion in the order of map number.

type=”xxx” – Specifies Modbus register type to read. Valid values in XML are shown below:

XML value Modbus Register type

“none” No register defined

“coil” Coil

“disc” Discrete Input

“input” Input Register

“hold” Holding Register

fc56=”n” – Specifies, if non-zero, that Modbus function codes 5 and 6 should be used instead of

the default 15 and 16 for writing coils and holding registers (single versus multiple).

addr=”n” – Specifies register address to read. Note that this is address starting from zero, not

register number starting from one like most Control Solutions gateways. Valid address range is

0..65535. NOTE: The Web UI should provide the means to let the user switch between display

of addresses (0-indexed), register numbers (1-indexed), or Modicon notation (where number and

type are combined into one value).

format=”xxx” – Specifies the format in which the Modbus data should be interpreted. Valid

formats for XML are shown below:

XML value Format descrip�on

“none” No format defined

 BB4-8422 Modbus TCP Client

Page 29

“bit” Single bit (coil, discrete only)

“int” Integer (16-, 32-, or 64-bit)

“real” Floa)ng point (single or double)

“char” ASCII character string

“mod10” Schneider Electric Mod10 format

size=”n” – Specifies the size of the object in number of Modbus registers. All Modbus registers

are either a single bit or 16 bits. It is up to the application to interpret multiple registers as other

data sizes, which the client does automatically when configured to write multiple registers. Only

certain combinations of data formats and register counts are valid. Note that character strings are

defined as a number of registers each holding two ASCII characters.

Valid sizes by register format are as follows:

Type Number of registers

Bit 1

Integer 1, 2, 4 (for 16-, 32-, 64-bit)

Real 2, 4 (for single, double precision)

Character 1..63 (registers - 2 characters per register)

Mod10 2, 3, 4

unsigned=”n” – Registers default to being treated as signed when integer. If this attribute value

is non-zero, then it will be treated as unsigned.

lowfirst=”n” – Specifies “little endian” when value is non-zero. Defaults to “big endian” if

omitted or value is zero. In “little endian” mode, the least significant data is in the first or lowest

numbered Modbus register. In “big endian” mode, the most significant data is in the first or

lowest numbered Modbus register. This only applies to multiple-register non-character data

entities (e.g. 32-bit integer). Character strings are always stored with the first character in the

string located in the first or lowest numbered Modbus register.

dev=”n” – Specifies the device to look up in the Modbus TCP device table to obtain the IP

address, port, etc, of the Modbus server/slave to query. (Not included in Modbus RTU XML

files.)

unit=”n” – Specifies the unit number to include in the TCP query (same as slave for RTU).

 BB4-8422 Modbus TCP Client

Page 30

scale=”n” – Scale factor – data from the local object is first multiplied by the scale factor, then

offset is added, to produce the register content written to the remote Modbus device. If “mask”

and/or “fill” are also provided, mask and fill are applied after scale and offset (opposite order

compared to read operation).

offset=”n” – Offset – added to data to be written to Modbus device (see scale).

poll=”n” – Poll time in seconds specifies how often this Modbus register will be written, if

periodic polling is enabled. Writing only when the local object changes is an option, in which

case the poll time is disregarded.

objnum=”n” – Specifies the local object that is the source of data to be written to the remote

Modbus device.

mask=”n” – Optional, if non-zero, then the data to be written to Modbus is shifted into the

position marked by bits set in the mask, and the data is then bitwise AND-ed with the mask. If

fill is also provided, then fill is applied after mask, and the result is written to the remote Modbus

device. Note that mask is only valid when the Modbus register format is integer.

fill=”n” – Optional, and if non-zero, provides a collection of bits that should always be set in the

data written to Modbus. The fill is bitwise OR-ed with the data after scale, offset, and mask have

been applied. Note that fill is only valid when the Modbus register format is integer.

maxquiet=”n” – Specifies the máximum amount of time that may elapse with no transmission

of new data to the Modbus slave. This effectively provides a fallback to periodic sending if set to

“send on delta” but there is never any change. The Max Quiet Time function is disabled if this

attribute is omitted in XML,

minquiet=”n” – Specifies the mínimum amount of time that must elapse between transmissions

of new data to the Modbus slave. This effectively throttles network traffic when “send on delta”

is enabled and the value is changing rapidly. A time of zero effectively disables this feature.

delta=”n” – Specifies the amount by which the object value must change before the new value

will be transmitted to the Modbus slave. If this attribute is omitted in XML, then the “send on

delta” function is disabled. The delta value may be zero, in which case any change is transmitted.

indexobj=”n” – Optional, allows for selectively enabling this write operation. If an index object

(local object number) is given, and its value matches the indexValue, then this write operation

will take place. If an indexObject is given but the local object’s value does not match the

indexValue, then this write operation will be skipped.

indexval=”n” – Optional, used in conjunction with indexObject (see note above).

 BB4-8422 Modbus TCP Client

Page 31

Modbus TCP Client CSV Files

A CSV file may be imported to configure various aspects of the IoTServer (or Babel Buster

gateway). A single CSV file may contain multiple sections. When a file including an “Objects”

section is imported by the Data Engine, local objects will be configured. When a file including

one or more “Modbus” sections is imported by an instance of the Modbus Engine, Modbus

gateway functionality will be configured. The same Modbus file may be imported by a Modbus

Client or Modbus Server, and either RTU or TCP, and only those sections of interest to that

Modbus function will be imported. The CSV file may also contain one or more SNMP sections,

and so forth.

A section begins when the word “Begin” appears in the first column of a line. All lines up to and

including a line that begins with the word “End” will be taken to be part of that section.

The line immediately following the “Begin” line must be a header line. A Header line is one

which labels the columns of data that will follow the Header line.

All lines following the Header line are data lines that are expected to contain the same number of

columns as the Header line, and whose contents are defined by the labels found in each column

of the Header line.

Labels in the section Begin and End lines, and labels in the Header line are NOT case sensitive

and will be interpreted equally whether upper case, lower case, or some combination of both (for

readability).

Labels may NOT contain embedded spaces. A label is terminated by a comma, line-end, or

space. Labels may not be encapsulated in quote characters; however, data content in data lines

may be encapsulated in quote characters and may contain embedded spaces or blanks if quoted.

Some labels in the Header line may be considered optional. The minimum required columns are

indicated in the definition of each data section.

Columns in the Header line do not have to follow any particular order. They may be rearranged

to the user’s liking. The only restriction is that data in subsequent data lines must match up with

the labels placed in the Header line. Data lines may contain fewer columns than the Header line,

but may not contain more. Data columns that the user wishes to deliberately omit, but omit

between included columns, should be indicated by place holder commas (which will simply

appear as blank cells in a spread sheet program).

A Begin line will contain three columns:

Column 1: BEGIN

Column 2: Function as noted below

Column 3: Sub-function as noted in definition of the Function.

Functions may be any of the following (with this listed expanded from time to time):

 BB4-8422 Modbus TCP Client

Page 32

 LOCALDATA

 MODBUS

 SNMP

Sub-functions:

MODBUS

 DEVICES

 READMAPS

 WRITEMAPS

 SERVERMAPS

 SERVERREMAPS

NOTE: A Modbus CSV file may contain both client and server sections as the respective

functionality will select sections relevant to its purpose. It should also be noted that the same

application, csiModbusEngine, can function as both client and server (master and slave).

MODBUS Client CSV Example

The following illustrates a valid Modbus TCP Client CSV configuration file. The DEVICES,

READMAPS, and WRITEMAPS sections of a CSV file will be processed when the Modbus

Engine is operating as a Client. Server sections (see later section) will only be processed by an

instance of a Modbus Server, and the server will skip over the Client sections illustrated here.

A valid Modbus RTU Client (Master) CSV configuration file would look largely the same,

except there is no DEVICES section in a Modbus RTU client. The other minor variation is that

“Device,Unit” in the read/write maps are replaced with “Slave”.

Begin,Modbus,Devices

Number,RemoteIP,Port,PollTime,Timeout,Name

1,192.168.1.135,502,2,2,SPX

End

Begin,Modbus,ReadMaps

Device,RegType,RegAddr,RegFormat,RegSize,DestObj,PollTime

1,Hold,0,Int,1,1,5

1,Hold,1,Int,1,2,5

1,Hold,2,Int,1,3,5

End

Begin,Modbus,WriteMaps

SourceObj,Device,RegType,RegAddr,RegFormat,RegSize,PollTime

4,1,Hold,3,Int,1,10

5,1,Hold,4,Int,1,10

End

 BB4-8422 Modbus TCP Client

Page 33

MODBUS (TCP client) DEVICES Section

The DEVICES section is only processed by an instance of the Modbus Engine that is running as

a TCP client. An RTU client will not reference TCP devices. RTU devices are referenced simply

by slave address included in the read and write maps. RTU port settings are not represented as

CSV since there is only a single instance which may be set via the web UI.

Number – Device number that will be reference in read and write maps.

RemoteIP – The IP address in “a.b.c.d” form that the TCP client will attempt to connect to for

read and write maps referencing this device number.

Port – The port number that should be opened at the remote IP address given. Port number will

default to 502 if not given or set to zero.

Unit – An optional unit number that will be used when connecting to this remote TCP device. If

none is given or is set to zero, then unit 1 will be used.

PollTime – The default poll time that will be used if none is given explicitly in individual read

and write maps.

Timeout – The amount of time that the client should wait before flagging the attempted read or

write with a “no response” error.

Name – Arbitrary name for this device, used only as a reference in the web UI.

MODBUS (client/master) READMAPS Section

Device – (REQUIRED if TCP) – Device number from the TCP Device list that should be

accessed for this read attempt on a TCP network.

Unit – (TCP only) – Unit number to be included in the TCP request, will default to 1 if not given

or is set to zero.

RegType – Modbus register type from following table, will default to “HOLD” if omitted. The

labels must be entered exactly as depicted in the table.

Label Modbus Register type

“none” No register defined

“Coil” Coil

“Disc” Discrete Input

 BB4-8422 Modbus TCP Client

Page 34

“Input” Input Register

“Hold” Holding Register

RegAddr – (REQUIRED if MODICON not used) – Raw 0-indexed address of the register to be

read. IMPORTANT: If manufacturer’s documentation indicates register 40001, DO NOT enter

40001 for RegAddr. This number is short-hand for holding register 1, and its address is zero.

Therefore, if you see 40001, select “Hold” for RegType, and enter 0 for RegAddr.

Modicon – (In lieu of RegType, RegAddr) – If one wishes to use Modicon notation, i.e., enter

40001 when the manufacturer’s documentation says 40001, then OMIT RegType AND

RegAddr, and use the Modicon label instead. Both standard and extended Modicon are

recognized. However, you cannot use both Modicon and RegType/RegAddr in the same section.

When Modicon is used, the RegType and RegAddr columns will be generated internally based

on the Modicon number given. Modicon is only available for Import. On export, RegType and

RegAddr will be used (Modicon notation is not recognized by the Modbus protocol standard

even though widely used as a defacto stanard).

RegFormat – Format of the data contained in the Modbus register(s), not used by the protocol,

but used by the gateway to interpret what the raw increments of 1 or 16 bits should mean. Select

format from the following table.

Format Label Format descrip�on

“None” No format defined

“Bit” Single bit, used ONLY for RegType Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floa)ng point (single or double precision)

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

RegSize – Register size refers to the number of consecutive input or holding registers should be

read for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit value would

have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit IEEE 754

floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating point)

would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). RegSize is not used for Coil or Disc

types.

 BB4-8422 Modbus TCP Client

Page 35

Unsigned – Indicate “Y” if unsigned, or “N” if signed. Defaults to signed integer. Has no effect

on RegFormat other than Int.

LittleEnd – Used when RegSize is greater than 1 to indicate what order the registers should be

interpreted in. Enter “Y” to indicate that the lowest numbered register contains the least

significant portion of data. Enter “N” or omit to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

Mask – A bit mask given as a 4-digit or 8-digit hexadecimal value, if non-zero (Mask operation

skipped if mask value is zero, or register format is not Int). When the data of interest is a single

bit, or bit field less than the full register width, the Mask is used. When the Modbus register is

read, its data is bit-wise ANDed with the Mask, then right justified so that the least significant

mask bit becomes the least significant data bit. The result is then placed in the local data object

selected by the read map.

Scale – Register content is multiplied by this value, if non-zero, before being placed into the

local object.

Offset – This value is added to the register content (after being multiplied by scale) before being

placed into the local object.

NOTE: The order of operation is as follows: (1) read Modbus register; (2) apply mask if

applicable; (3) apply scale if non-zero; (4) apply offset. Result is then placed in local object.

DestObj – (REQUIRED) – Local object number that the result of the Modbus read operation

should be placed into.

PollTime – Poll time in seconds (can be fractional). The sets the rate at which the remote

Modbus register will be read. This poll time is not guaranteed to be met. Polling is done in

round-robin fashion. In a very busy system, more than this time may expire before the next poll.

If less than this time has expired, then the system will wait this amount of time until polling

again.

DefValue – Provides the default value that the local object should be set to in the event the

FailCount is exceeded.

FailCount – Optional, provides a count of read failures, if non-zero, that can occur before the

local object will be set to the default value given in this map. If zero, the default value will never

be applied. If 1, then the default value will be applied upon the first failure (probably not

recommended), and so on. The count is reset by a successful read.

IndexObj – Optional, allows for selectively enabling this read operation. If an index object

(local object number) is given, and its value matches the IndexVal value, then this read operation

 BB4-8422 Modbus TCP Client

Page 36

will take place. If an IndexObj is given but the local object’s value does not match the IndexVal,

then this read operation will be skipped.

IndexVal – Optional, used in conjunction with IndexObj (see note above).

MODBUS (client/master) WRITEMAPS Section

SourceObj – Specifies the local object number that contains the data that should be sent by this

write map.

Scale – Provides a scale factor if non-zero (has the effect of being 1 if zero). Data to be written is

retrieved from the local object and then multiplied by this scale factor before being sent to the

remote Modbus device. Applies to numeric values and numeric local objects only.

Offset – Provides an offset to work in conjunction with scale factor. This value is added to the

value retrieved from the local object (after being multiplied by scale) before being sent to the

remote Modbus device. Applies to numeric values and numeric local objects only.

Mask – A bit mask given as a 4-digit or 8-digit hexadecimal value, if non-zero (Mask operation

skipped if mask value is zero, or register format is not Int). When the data of interest is a single

bit, or bit field less than the full register width, the Mask is used. The process used in a read

operation is reversed here. First, the mask is right justified so that the least significant “1” bit is

in the least significant data position. That mask is then logically ANDed with the data found in

the local object. The result is then left justified back into the position originally indicated by the

mask. This value is now ready to be written to the Modbus register, pending any additional

operation such as the Fill mask.

Fill – An additional bit mask given as a 4-digit or 8-digit hexadecimal value. This mask is

logically ORed with the result of the Mask operation before the final result is written to the

Modbus register. The Fill mask has the effect of making sure certain bits in the register are

always set.

NOTE: The order of operation is as follows, operating on data retrieved from the local object: (1)

apply scale if nonzero; (2) apply offset; (3) apply mask if applicable; (4) apply fill if applicable;

(5) write to Modbus register.

Device – (REQUIRED if TCP) – Device number from the TCP Device list that should be

accessed for this write attempt on a TCP network.

Unit – (TCP only) – Unit number to be included in the TCP request, will default to 1 if not given

or is set to zero.

RegType – Modbus register type from following table, will default to “HOLD” if omitted. The

labels must be entered exactly as depicted in the table.

 BB4-8422 Modbus TCP Client

Page 37

Label Modbus Register type

“none” No register defined

“Coil” Coil

“Disc” Discrete Input

“Input” Input Register

“Hold” Holding Register

RegAddr – (REQUIRED if MODICON not used) – Raw 0-indexed address of the register to be

read. IMPORTANT: If manufacturer’s documentation indicates register 40001, DO NOT enter

40001 for RegAddr. This number is short-hand for holding register 1, and its address is zero.

Therefore, if you see 40001, select “Hold” for RegType, and enter 0 for RegAddr.

Modicon – (In lieu of RegType, RegAddr) – If one wishes to use Modicon notation, i.e., enter

40001 when the manufacturer’s documentation says 40001, then OMIT RegType AND

RegAddr, and use the Modicon label instead. Both standard and extended Modicon are

recognized. However, you cannot use both Modicon and RegType/RegAddr in the same section.

When Modicon is used, the RegType and RegAddr columns will be generated internally based

on the Modicon number given. Modicon is only available for Import. On export, RegType and

RegAddr will be used (Modicon notation is not recognized by the Modbus protocol standard

even though widely used as a defacto stanard).

RegFormat – Format of the data contained in the Modbus register(s), not used by the protocol,

but used by the gateway to interpret what the raw increments of 1 or 16 bits should mean. Select

format from the following table.

Format Label Format descrip�on

“None” No format defined

“Bit” Single bit, used ONLY for RegType Coil or Disc

“Int” Integer (size and whether signed are defined by labels below)

“Real” Floa)ng point (single or double precision)

“Char” Character string with 2 ASCII characters per register

“Mod10” Mod10 format, can be 2, 3, or 4-register, specific to Schneider Electric meters

RegSize – Register size refers to the number of consecutive input or holding registers should be

written for a value greater than 16 bits. A 16-bit value would have size of 1, a 32-bit value would

 BB4-8422 Modbus TCP Client

Page 38

have size of 2, and a 64-bit value would have size of 4. Single precision Real (32-bit IEEE 754

floating point) would be size 2, and double precision Real (64-bit IEEE 754 floating point)

would be size 4. If format is Mod10, then valid sizes are 2, 3, or 4 – check manufacturer’s

documentation if Mod10 is noted. Register “size” for a character string will be character count

divided by 2 (plus 1 of string length is an odd number). RegSize is not used for Coil or Disc

types.

UseFC56 – Enter “Y” to force single register writes to use Modbus function 5 to write a single

coil, or function 6 to write a single holding register. Function codes will default to “write

multiple” function codes 15 and 16 instead of 5 and 6 respectively if “N” is entered or this

column is omitted.

Unsigned – Indicate “Y” if unsigned, or “N” if signed. Defaults to signed integer. Has no effect

on RegFormat other than Int.

LittleEnd – Used when RegSize is greater than 1 to indicate what order the registers should be

interpreted in. Enter “Y” to indicate that the lowest numbered register contains the least

significant portion of data. Enter “N” or omit to indicate that the lowest numbered register

contains the most significant portion of data. Although Modbus protocol itself is not inherently

“Little Endian”, many devices operate that way due to Intel processors being inherently Little

Endian. Modbus protocol does not stipulate what the register order should be when multiple

registers are treated as a single data entity. Therefore, the user is required to pay attention to this.

SendPeriodic – Set to “N” to disable, or “Y” to enable periodic writing of the Modbus register at

the poll rate given by PollTime.

PollTime – Poll time in seconds, can be fractional. This poll time is not guaranteed to be met.

Polling is done in round-robin fashion. In a very busy system, more than this time may expire

before the next poll. If less than this time has expired, then the system will wait this amount of

time until polling again. The sets the rate at which the remote Modbus register will bewritten,

provided “SendPeriodic” has been enabled. This poll time will be disregarded if SendPeriodic is

not enabled.

SendMaxQuiet – Set to “N” to disable or “Y” to enable the MaxQuietTime feature. If disabled,

the MaxQuietTime will be disregarded.

MaxQuietTime – “Max Quiet” time in seconds, can be fractional. If the Modbus register has not

been written either as a result of poll timing or value changing by delta within this time period,

then write request will be made anyway. This specifies the maximum amount of time that should

expire without any write to the Modbus register for any reason.

SendOnDelta – Set to “N” to disable, or “Y” to enable the “send on delta” feature where

Modbus writes are made based on changes in the local object value (see delta below).

Delta – Specifies the margin by which the local object value should change before sending

another Modbus write request to the remote Modbus device. Once the changed value has been

 BB4-8422 Modbus TCP Client

Page 39

sent, the new local value is retained for future comparison in determining subsequent additional

change. The delta value is disregarded if SendOnDelta is not enabled. Note that a delta of zero is

treated as a special case: Any update to the local object by any process will result in a new

Modbus write request.

MinQuietTime – Time in seconds, can be fractional. This specifies the mínimum amount of

time that should elapse between sending of write requests for this write map. The minimum quiet

time has the effect of throttling network traffic.

IndexObj – Optional, allows for selectively enabling this write operation. If an index object

(local object number) is given, and its value matches the IndexVal value, then this write

operation will take place. If an IndexObj is given but the local object’s value does not match the

IndexVal, then this write operation will be skipped.

IndexVal – Optional, used in conjunction with IndexObj (see note above).

Socket Errors

The following is the full list of standard operating system error codes. Only some of these are

applicable to sockets.

Symbolic Numeric Descrip�on

EPERM 1 Opera)on not permi:ed

ENOENT 2 No such file or directory

ESRCH 3 No such process

EINTR 4 Interrupted system call

EIO 5 I/O error

ENXIO 6 No such device or address

E2BIG 7 Argument list too long

ENOEXEC 8 Exec format error

EBADF 9 Bad file number

ECHILD 10 No child processes

EAGAIN 11 Try again

 BB4-8422 Modbus TCP Client

Page 40

ENOMEM 12 Out of memory

EACCES 13 Permission denied

EFAULT 14 Bad address

ENOTBLK 15 Block device required

EBUSY 16 Device or resource busy

EEXIST 17 File exists

EXDEV 18 Cross-device link

ENODEV 19 No such device

ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument

ENFILE 23 File table overflow

EMFILE 24 Too many open files

ENOTTY 25 Not a typewriter

ETXTBSY 26 Text file busy

EFBIG 27 File too large

ENOSPC 28 No space leH on device

ESPIPE 29 Illegal seek

EROFS 30 Read-only file system

EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func

ERANGE 34 Math result not representable

EDEADLK 35 Resource deadlock would occur

 BB4-8422 Modbus TCP Client

Page 41

ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available

ENOSYS 38 Invalid system call number

ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered

EWOULDBLOCK EAGAIN (11) Opera)on would block

ENOMSG 42 No message of desired type

EIDRM 43 Iden)fier removed

ECHRNG 44 Channel number out of range

EL2NSYNC 45 Level 2 not synchronized

EL3HLT 46 Level 3 halted

EL3RST 47 Level 3 reset

ELNRNG 48 Link number out of range

EUNATCH 49 Protocol driver not a:ached

ENOCSI 50 No CSI structure available

EL2HLT 51 Level 2 halted

EBADE 52 Invalid exchange

EBADR 53 Invalid request descriptor

EXFULL 54 Exchange full

ENOANO 55 No anode

EBADRQC 56 Invalid request code

EBADSLT 57 Invalid slot

EDEADLOCK EDEADLK (35) Resource deadlock would occur

EBFONT 59 Bad font file format

 BB4-8422 Modbus TCP Client

Page 42

ENOSTR 60 Device not a stream

ENODATA 61 No data available

ETIME 62 Timer expired

ENOSR 63 Out of streams resources

ENONET 64 Machine is not on the network

ENOPKG 65 Package not installed

EREMOTE 66 Object is remote

ENOLINK 67 Link has been severed

EADV 68 Adver)se error

ESRMNT 69 Srmount error

ECOMM 70 Communica)on error on send

EPROTO 71 Protocol error

EMULTIHOP 72 Mul)hop a:empted

EDOTDOT 73 RFS specific error

EBADMSG 74 Not a data message

EOVERFLOW 75 Value too large for defined data type

ENOTUNIQ 76 Name not unique on network

EBADFD 77 File descriptor in bad state

EREMCHG 78 Remote address changed

ELIBACC 79 Can not access a needed shared library

ELIBBAD 80 Accessing a corrupted shared library

ELIBSCN 81 .lib sec)on in a.out corrupted

ELIBMAX 82 A:emp)ng to link in too many shared libraries

ELIBEXEC 83 Cannot exec a shared library directly

 BB4-8422 Modbus TCP Client

Page 43

EILSEQ 84 Illegal byte sequence

ERESTART 85 Interrupted system call should be restarted

ESTRPIPE 86 Streams pipe error

EUSERS 87 Too many users

ENOTSOCK 88 Socket opera)on on non-socket

EDESTADDRREQ 89 Des)na)on address required

EMSGSIZE 90 Message too long

EPROTOTYPE 91 Protocol wrong type for socket

ENOPROTOOPT 92 Protocol not available

EPROTONOSUPPORT 93 Protocol not supported

ESOCKTNOSUPPORT 94 Socket type not supported

EOPNOTSUPP 95 Opera)on not supported on transport endpoint

EPFNOSUPPORT 96 Protocol family not supported

EAFNOSUPPORT 97 Address family not supported by protocol

EADDRINUSE 98 Address already in use

EADDRNOTAVAIL 99 Cannot assign requested address

ENETDOWN 100 Network is down

ENETUNREACH 101 Network is unreachable

ENETRESET 102 Network dropped connec)on because of reset

ECONNABORTED 103 SoHware caused connec)on abort

ECONNRESET 104 Connec)on reset by peer

ENOBUFS 105 No buffer space available

EISCONN 106 Transport endpoint is already connected

ENOTCONN 107 Transport endpoint is not connected

 BB4-8422 Modbus TCP Client

Page 44

ESHUTDOWN 108 Cannot send aHer transport endpoint shutdown

ETOOMANYREFS 109 Too many references: cannot splice

ETIMEDOUT 110 Connec)on)med out

ECONNREFUSED 111 Connec)on refused

EHOSTDOWN 112 Host is down

EHOSTUNREACH 113 No route to host

EALREADY 114 Opera)on already in progress

EINPROGRESS 115 Opera)on now in progress

ESTALE 116 Stale file handle

EUCLEAN 117 Structure needs cleaning

ENOTNAM 118 Not a XENIX named type file

ENAVAIL 119 No XENIX semaphores available

EISNAM 120 Is a named type file

EREMOTEIO 121 Remote I/O error

EDQUOT 122 Quota exceeded

ENOMEDIUM 123 No medium found

EMEDIUMTYPE 124 Wrong medium type

ECANCELED 125 Opera)on Canceled

ENOKEY 126 Required key not available

EKEYEXPIRED 127 Key has expired

EKEYREVOKED 128 Key has been revoked

EKEYREJECTED 129 Key was rejected by service

EOWNERDEAD 130 Owner died

ENOTRECOVERABLE 131 State not recoverable

 BB4-8422 Modbus TCP Client

Page 45

ERFKILL 132 Opera)on not possible due to RF-kill

EHWPOISON 133 Memory page has hardware error

