
 BB4-8422 Data Objects

 Page 1

BB4-8422 Data Objects

The IoTServer is, at its core, protocol agnostic. Its internal data objects are generic in nature.

These local objects may be represented in various ways that are specific to various protocols. But

the content is universal and can be shared across all protocols supported by the IoTServer device.

The "Data Engine" pages are where you view the present values of the objects, and specify the

internal format for each object. Data objects may be natively integer, floating point, or character

string. When accessed by various protocols, data type conversions are made automatically.

Global Values

The terms "global values" and "local objects" are used interchangeably in the IoTServer. The

values are "global" in the sense that they are shared among all protocols and applications known

to the IoTServer. The objects are "local" in the sense that they are stored and maintained within

the IoTServer itself. The objects themselves are protocol agnostic, but may be presented to the

outside world using protocol specific representations.

Global Object Values

The Global Values page shows the present values of all of the data objects in the system. The

time at which the object was last updated is displayed along with the object's present status.

Status indications may be any of the following:

 “Normal” = ac�vity producing data for this object is proceeding normally

 “Default” = as a result of some error, the object has assumed its default value

 “Database-Value” = object is persistent and value was retrieved from values database

 “Inac�ve” = object is not configured

 BB4-8422 Data Objects

 Page 2

 “Stale” = refresh �me exceeded since last update

 “Zero-Unini�alized” = object is configured but not yet processing data

 “Overridden” = normal data ac�vity has been overridden

 “Source Fault” = a communica�on client has reported an error in a*emp�ng to provide data

 “Unknown” = a fault code not recognized by the Json API is present

You may modify the configuration (or definition) of a data object by clicking the object number

or pencil icon next to the object number. You can also add new objects - start by clicking the

pencil icon of an object near the point where you want to add objects (normally the end of the

list).

Changing Object Value

Change an object's value by clicking the pencil icon next to the present value. A dialog will

appear with the present value. Modify the value as desired and click Ok. Note that any values

entered may be overwritten by the next value read from a device connected via the network and

polled by one of the protocols in the IoTServer.

 BB4-8422 Data Objects

 Page 3

Global Object Edit

Number – The local object number being defined (first object is 1).

Name – Arbitrary name for the data object, generally visible in web UI’s. CSV import will insert

“Object name N” if omitted.

Description – Arbitrary description of the object provided by the user. CSV import will insert

“Object N description” if omitted.

Type – Valid parameters for type, referring to native data type, are as follows (CSV will assume

integer if omitted):

Type label Descrip�on

Int 32-bit integer

Int64 64-bit integer

Real Floa�ng point (double precision)

Char ASCII character string

Length – If type is “char”, then this specifies how many character long the string is. Not used for

any type other than char. Length should be an integer. CSV import will assume maximum

permitted value if omitted.

 BB4-8422 Data Objects

 Page 4

Location – Arbitrary location string further documenting the object. CSV import will insert

“Location N” if omitted.

Units – Arbitrary units string further documenting the object. CSV import will insert “No units”

if omitted.

Refresh Timeout – A timeout in seconds, if nonzero. If the object is not updated within this

amount of time, its status will be changed to “stale”. If zero, the timeout feature is disabled and

the object will never become stale. Timeout should be an integer. Will default to zero.

Default on Timeout - Check to set object to default value upon refresh timeout (in addition to

setting status to "stale"). This is especially useful for SNMP table walks of alarm tables to cause

object value to return to zero when alarm is no longer found to exist.

Default Value – Default value to be applied upon startup if requested, may be integer or real

(but not character). Will default to zero.

Default On Startup – Check to indicate that this object should be set to the default value at

startup.

Is Persistent – Check to indicate this object is “persistent”, which means saved in non-volatile

memory. This non-volatile memory is implemented as a database stored in Flash memory. Upon

startup, the object will assume its last known value as found in the database. Any changes to the

object’s value will be recorded in the database for future use. If not persistent, objects will start

up with a value of zero, unless the "default on start" has been selected.

NOTE: You would not normally select both "default on startup" and "is persistent" because these

will contradict each other.

 BB4-8422 Data Objects

 Page 5

To add or insert new objects, enter a number of objects to add, and select a starting point. Then

click the Add button.

Object Status

The Object Status page is a mirror image of the Global Values page, but with additional

diagnostic information. If the object's value is being updated by a protocol function somewhere

in the system, that protocol mapping will be displayed here.

The Data Source tells you where values in this object are coming from, e.g. Modbus TCP Client.

The number in brackets is the task number (from task status page). The second item in the data

source is the specific map number or rule number. The map or rule will most often be a "read

map".

Note that only data sources known to the IoTServer will be listed here, namely client functions

that are actively polling other devices to collect data. When the IoTServer is functioning as a

server or slave, and other remote clients or masters are writing data to the IoTServer, the

IoTServer has no way of knowing what these sources are. Therefore, there can be sources of data

not explicitly listed here.

 BB4-8422 Data Objects

 Page 6

The maps or rules for any protocol client that is actively polling other devices for data will have

a "Set Source Info" button to "claim" objects for that protocol. That button must be clicked

before any information will show up in the Data Source column here.

If there are conflicts, i.e. two different clients trying to provide data to the same object, you will

see error messages when the Set Source Info button is clicked. To clear the source info and start

over on the claim process, click the Clear Source Info button here.

Object Config File

All of your configuration information is stored in an internal database each time you click the

Save button on any page where configuration entries may be made. To make configuration

portable from one device to another, and for purposes of retaining a backup copy, the

configuration information may be exported and imported as XML or CSV files. This page is

where your configuration file management takes place.

It is important to note that the XML file saved within any one system function will contain the

configuration information for only that function. Depending on overall system configuration, a

complete backup may involve more than one XML or CSV file.

 BB4-8422 Data Objects

 Page 7

XML Files: When an XML file has been selected, click the Load button to clear the

configuration database and reload configuration from the given XML file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in XML format.

You may type in a new name in the file name window for purposes of saving a new file. If you

click the Refresh button, the file name will be restored to the name currently loaded into the

client. The name could have been changed by selecting a file from the list below, or by typing in

a new name. If the displayed name has not yet been used, then Refresh will restore the file name

to what was most recently loaded.

CSV Files: If a CSV file is selected, the Load and Save buttons will change into load/save CSV

buttons. When a CSV file has been selected, click the Load button to clear the configuration

database and reload configuration from the given CSV file.

Select an existing name to overwrite or enter a new file name, and then click Save to write the

current configuration to the file in CSV format.

 BB4-8422 Data Objects

 Page 8

The drop-down list will show a list of all configuration files currently found in the device's

configuration folder. When you select an XML or CSV file from this list, the name will be

copied to the Load/Save section of this page for pending load or save.

You may view the selected file by simply clicking View. You can delete the file by clicking

Delete.

You may upload files to the IoTServer from your PC. Start by clicking Browse, and then use the

browser's file dialog to locate the file on your PC. Once a file is selected on your PC, click the

"Start upload" button to initiate the transfer.

You may also download files from the IoTServer to your PC. Click the Download button to

transfer the selected file to your PC.

Any time an XML or CSV file is loaded, an error log file is generated. The error log file will be

given the same name as the loaded file, but with ".err" as the suffix instead of ".xml" or ".csv".

You may view the error log by selecting it from the list and clicking View.

Status is normally displayed in a message box at the top of the screen when the load or save

operation is complete. But if you want to double check the status of the previous file operation,

click Check Status.

The task needs to be suspended while a file load operation is in progress to prevent acting on any

partial configurations. This suspend/resume operation will normally happen automatically as part

of the sequence invoked by the Load button. The task can be explicitly suspended here. The

Suspend button will become a Resume button when the task is suspended. Click Resume to

continue operation. The current status is always displayed here.

 BB4-8422 Data Objects

 Page 9

Global Object XML Files

Example XML File

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration>

<data_objects>

<obj id="1">

<set type="int" name="Object 1" desc="First object"/>

<set location="Building 1" units="Degrees"/>

<set refresh="600"/>

<set defvalue="10" defonstart="1" persistent="1"/>

</obj>

<obj id="2">

<set type="int" name="Object 2" desc="Second object"/>

<set location="Building 2" units="Degrees"/>

<set refresh="600"/>

<set defvalue="20" defonstart="1" persistent="1"/>

</obj>

<obj id="3">

<set type="int64" name="Object 3" desc="Third object"/>

<set location="Building 3" units="Degrees"/>

<set refresh="600"/>

<set defvalue="0" defonstart="1" persistent="1"/>

</obj>

</data_objects>

</configuration>

Global Object <data_objects> Section

Each XML “paragraph” about an object starts with an ID number, which will be the object

number that is universally accessible to all applications in the system.

For each object:

type="xxx" - Valid parameters for type, referring to native data type, are as follows:

Type label Description

int 32-bit integer

int64 64-bit integer

real Floating point (double precision)

char ASCII character string

 BB4-8422 Data Objects

 Page 10

length="n" – If type is “char”, then this specifies how many character long the string is. Not

used for any type other than char. Length should be an integer.

name="ObjectName" – arbitrary name for the data object, generally visible in web UI’s.

desc="description" – arbitrary description of the object provided by the user.

location="location" – arbitrary location string further documenting the object.

units="unitsName" – arbitrary units string further documenting the object.

refresh="n" – A timeout in seconds, if nonzero. If the object is not updated within this amount

of time, its state will be changed to “stale”. If zero, the timeout feature is disabled and the object

will never become stale. Timeout should be an integer.

defvalue="n.nn" – Default value to be applied upon startup if requested.

defontimeout="1" - Flag set to "1" to indicate that this object should be set to the default value

upon refresh timeout.

defonstart="1" – Flag set to “1” to indicate that this object should be set to the default value at

startup, or zero otherwise (zero assumed if omitted).

persistent="1" – Flag set to “1” to indicate this object is “persistent”, which means saved in

non-volatile memory. This non-volatile memory is implemented as a database stored in Flash

memory. Upon startup, the object will assume its last known value as found in the database. Any

changes to the object’s value will be recorded in the database for future use. If not persistent, set

flag to zero (zero assumed if omitted).

Global Object CSV Files

A CSV file may be imported to configure various aspects of the IoTServer (or Babel Buster

gateway). A single CSV file may contain multiple sections. When a file including an “Objects”

section is imported by the Data Engine, local objects will be configured. When a file including

one or more “Modbus” sections is imported by an instance of the Modbus Engine, Modbus

gateway functionality will be configured. The same Modbus file may be imported by a Modbus

Client or Modbus Server, and either RTU or TCP, and only those sections of interest to that

Modbus function will be imported. The CSV file may also contain one or more SNMP sections,

and so forth.

A section begins when the word “Begin” appears in the first column of a line. All lines up to and

including a line that begins with the word “End” will be taken to be part of that section.

The line immediately following the “Begin” line must be a header line. A Header line is one

which labels the columns of data that will follow the Header line.

 BB4-8422 Data Objects

 Page 11

All lines following the Header line are data lines that are expected to contain the same number of

columns as the Header line, and whose contents are defined by the labels found in each column

of the Header line.

Labels in the section Begin and End lines, and labels in the Header line are NOT case sensitive

and will be interpreted equally whether upper case, lower case, or some combination of both (for

readability).

Labels may NOT contain embedded spaces. A label is terminated by a comma, line-end, or

space. Labels may not be encapsulated in quote characters; however, data content in data lines

may be encapsulated in quote characters and may contain embedded spaces or blanks if quoted.

Some labels in the Header line may be considered optional. The minimum required columns are

indicated in the definition of each data section.

Columns in the Header line do not have to follow any particular order. They may be rearranged

to the user’s liking. The only restriction is that data in subsequent data lines must match up with

the labels placed in the Header line. Data lines may contain fewer columns than the Header line,

but may not contain more. Data columns that the user wishes to deliberately omit, but omit

between included columns, should be indicated by place holder commas (which will simply

appear as blank cells in a spread sheet program).

A Begin line will contain three columns:

Column 1: BEGIN

Column 2: Function as noted below

Column 3: Sub-function as noted in definition of the Function.

Functions may be any of the following (with this listed expanded from time to time):

 LOCALDATA

 MODBUS

 SNMP

Sub-functions:

MODBUS

 DEVICES

 READMAPS

 WRITEMAPS

 SERVERMAPS

 SERVERREMAPS

NOTE: A Modbus CSV file may contain both client and server sections as the respective

functionality will select sections relevant to its purpose. It should also be noted that the same

application, csiModbusEngine, can function as both client and server (master and slave).

 BB4-8422 Data Objects

 Page 12

Global Objects CSV Example

The following illustrates a valid local object configuration CSV file. Columns omitted in any

given line will assume default values.

Note: Pay special attention to quote characters. It is not necessary to explicitly include them

when entering labels in the spread sheet program. The CSV export (file save as) will do that for

you. More importantly, if you type them in manually, they will be the “fancy” version of quote

characters and will be explicitly included in the resulting object name. Only the plain quotes

inserted by the spread sheet program will be recognized as escape characters for embedded

commas.

BEGIN,LOCALDATA,OBJECTS

NUMBER,TYPE,LENGTH,NAME,DESC,LOCATION,UNITS,REFRESH,DEFVALUE,DEFO

NTIMEOUT,DEFONSTART,PERSISTENT

1,INT,0,My object 1,Object 1 description,Location 1,No units,600,-99.000000,N,N,N

2,INT,0,My object 2,Object 2 description,Location 2,No units,600,-99.000000,N,N,N

3,INT,0,My object 3,Object 3 description,Location 3,No units,600,-99.000000,N,N,N

4,INT,0,"Thing 1,2,3",Object 4 description,Location 4,No units,600,-99.000000,N,N,N

11,REAL,0,Object name 11,Object 11 description,Location 11,No units,600,-99.000000,N,N,N

12,REAL,0,Object name 12,Object 12 description,Location 12,No units,600,-99.000000,N,N,N

21,CHAR,80,Object name 21,Object 21 description,Location 21,No units,0,0.000000,N,N,N

22,CHAR,80,Object name 22,Object 22 description,Location 22,No units,0,0.000000,N,N,N

END

LOCALDATA OBJECTS Data Section

For each object, the following data columns are recognized, with minimum required columns

denoted “REQUIRED”:

Number – (REQUIRED) The local object number being defined (first object is 1).

Type – Valid parameters for type, referring to native data type, are as follows (CSV will assume

integer if omitted):

Type label Description

Int 32-bit integer

Int64 64-bit integer

Real Floating point (double precision)

Char ASCII character string

Length – If type is “char”, then this specifies how many character long the string is. Not used for

any type other than char. Length should be an integer. CSV import will assume maximum

permitted value if omitted.

 BB4-8422 Data Objects

 Page 13

Name – Arbitrary name for the data object, generally visible in web UI’s. CSV import will insert

“Object name N” if omitted.

Desc – Arbitrary description of the object provided by the user. CSV import will insert “Object

N description” if omitted.

Location – Arbitrary location string further documenting the object. CSV import will insert

“Location N” if omitted.

Units – Arbitrary units string further documenting the object. CSV import will insert “No units”

if omitted.

Refresh – A timeout in seconds, if nonzero. If the object is not updated within this amount of

time, its state will be changed to “stale”. If zero, the timeout feature is disabled and the object

will never become stale. Timeout should be an integer. Will default to zero.

DefValue – Default value to be applied upon startup if requested, may be integer or real (but not

character). Will default to zero.

DefOnTimeout - Flag set to "Y" to indicate that this object should be set to the default value

upon refresh timeout.

DefOnStart – Flag set to “Y” to indicate that this object should be set to the default value at

startup, or “N” otherwise (“N” assumed if omitted).

Persistent – Flag set to “Y” to indicate this object is “persistent”, which means saved in non-

volatile memory. This non-volatile memory is implemented as a database stored in Flash

memory. Upon startup, the object will assume its last known value as found in the database. Any

changes to the object’s value will be recorded in the database for future use. If not persistent, set

flag to “N” (“N” assumed if omitted).

